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1 Introduction

1.1 Supramolecules

Supramolecules can be defined as the organized entities that result from the association of

two or more molecules held together by intermolecular forces: hydrogen bonding, electro-

static interactions, hydrophobic interactions, coordination bonds and host-guest interactions.

The terms ”supramolecule” (1973) and ”supramolecular chemistry” (1978) were introduced

by Jean-Marie Lehn, who shared the 1987 Nobel Prize in Chemistry with Charles J. Peder-

sen and Donald J. Cram for the synthesis of host-guest compounds. Such synthetic systems

serve as perfect models for enzymes and other natural biological molecules with host-guest

interactions. One example of these synthetic hosts are the calixarenes, utilized in such appli-

cations as enzyme mimics, ion carriers and selective complexing agents [68]. Calix[n]arenes

are macrocyclic molecules built from 4 to 8 phenol rings linked via methylene units [69], see

Fig. 1.1. The name calixarene was suggested by C. David Gutsche as a combination of calix,

indicating a similarity between the shape of these molecules and a Greek vase (calix crater),

and arene, denoting a compound with aromatic rings [71, 72]. Any hydrogen atom at the

upper rim or from the hydroxyl groups at the lower rim in Fig. 1.1 can be replaced by other

sidegroups to modify the properties of calixarenes. Such high capability to functionalisation

makes calixarenes popular building blocks in supramolecular chemistry.

Calix[4]arenes have four different conformations, distinguished by the orientation of the

phenol rings with respect to the central annulus, see Fig. 1.1. The conformation with all phe-

nol rings pointing in the same direction is the “cone” conformation. In this conformation the

calix[4]arene has a vase-like shape with a cavity inside and thus can form molecular com-

plexes with smaller molecules. These molecular complexes have been observed by X-ray

1
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Figure 1.1: Cone (left) and paco (right) conformations of a calix[4]arene.

structure determination and NMR [15, 24, 144]. In the “paco” (short for partial cone) con-

formation one of the phenol rings is rotated with respect to the other three phenol rings, see

Fig. 1.1. There are two conformations in which two phenol rings are oriented in a different

direction than the other two phenol rings, namely the “1,2-alternate” with two neighboring

rings rotated, and the “ 1,3-alternate” with two opposite rings rotated. When the two remain-

ing phenol rings are also rotated the calix[4]arenes have “inverted cone” conformation. The

rates of this cone to inverted cone isomerization for calix[4]arenes with different side groups

and in various solvents have been measured with 1H-NMR [10, 70].

1.2 Amphiphilic bilayers as membrane

Membranes are responsible for many important functions of living cells. They serve as a

barrier between the interior of a cell and the outside world, and maintain nonequilibrium

concentrations of substances in the cytoplasm. Pore formation is the first step of various

biological processes such as fusion, cell lysis, and processes related to the transport of ions

and small molecules across a membrane. The latter initiated the development of targeted

drug delivery and gene therapy. Real biomembranes are complex objects, because - mixed

composition proteins. It is more convenient to study the process of pore formation in simpler

membranes: amphiphilic bilayers.

Amphiphiles, such as soap molecules or the lipids of biological membranes, consist of a

hydrophobic tail and hydrophilic head. This conflicting structure is responsible for the self-

assembly of amphiphiles in water into different aggregates to shield the hydrophobic tails

2
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Mechanical stress

or electric field

Figure 1.2: Cross-section of an intact bilayer (left) and a bilayer with a pore (right).

Figure 1.3: Top view of the experimental

chamber used by Zhelev and Needham. (Re-

produced with permission from [159])

Figure 1.4: Microscope image of a bilayer

vesicle aspirated into a micropipette. (Repro-

duced with permission from [47])

from water: cylindrical or spherical micelles, bilayers and vesicles. In this thesis we consider

only amphiphilic bilayers. When the bilayer is exposed to external forces, e. g. a mechanical

stress or a strong electric field, the bilayer can yield and open up a pore. The process of

pore formation is necessarily accompanied by the rearrangement of the amphiphiles which

(are going to) constitute the edge of the pore to shield the hydrophobic tails from water, see

Fig. 1.2.

Pore formation has been studied experimentally since the 1960’s using different tech-

niques: mechanical stress, electroporation, optical illumination, imploding bubbles, adhesion

at a substrate, optical tweezers and puncturing by a sharp tip. The experimental study of

pores in membranes is complicated due to the short time life of the produced pores: either

the pore closes rapidly or the membrane ruptures. Recently developed techniques allow one

to extend the time life of a pore. In 1992 D. V. Zhelev and D. Needham presented the first

study of long-lived pores in lipid membranes.

Pore formation in a bilayer vesicle was initiated by a single, square, electric pulse. To

3



1. INTRODUCTION

prevent the pore from closing, the vesicle was aspirated into a micropipet, see Fig. 1.3 and

Fig. 1.4. Thus, by controlling the pipet suction pressure, the surface tension of the membrane

was made to balance the line tension of the pore [159]. The time life of the pore was extended

to 10µs in this experiment. A second expedient to extend the time life of a pore is to perform

the experiment in a highly viscous solvent [123].

1.3 Conformational transitions

This thesis reports on the free energy calculation of conformational transitions in two, it

would seem, absolutely different processes. The isomerization of calix[4]arene considered

here is the transition of a calix[4]arene molecule from the cone conformation into the paco

conformation, and represents the rearrangement of atoms within the molecule, whereas the

formation of a pore in an amphiphilic bilayer involves the rearrangement of the molecules

within a large molecular assembly. The free energy profiles of the calix[4]arene and the

stretched bilayer with a pore are similar, see Figs. 1.5 and 1.6. Both curves have two min-

ima corresponding to their respective stable states: the cone and paco conformations for the

calix[4]arene; the intact and the perforated states for the bilayer. The barriers dividing the

stable states are 12-15 kcal/mol, depending on the solvent, for the calix[4]arene and 10-20

kcal/mol, depending on the stretching tension, for the bilayer. Thus, both transition processes

are activated processes and occur rarely.

The theoretical treatment of activated processe requires the introduction of a reaction

coordinate for the process concerned. The free energy profile of this activated processes

is then calculated as a function of the reaction coordinate. Usually this concept is applied

to chemical reactions with simple reaction coordinates, such as a bond length or a dihedral

angle. In this thesis we show that the calculation of a free energy as a function of a reaction

coordinate is more general and can be used for quite different activated processes.

1.4 Thesis outline

The main theoretical background of this thesis is statistical mechanics. Hence a concise

introduction to statistical mechanics begins Chapter 2. This chapter is devoted to the theory

4
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Figure 1.6: Free energy F, as a function of

the pore radius R, for a stretched bilayer.

used in the thesis: reaction rate theory, basics of molecular dynamics simulations, methods

for free energy calculations and Helfrich’s theory of the free energy of a bilayer.

In Chapter 3 we investigate the influence of solvation on the conformational isomerism

of calix[4]arene and p-tert-butyl[4]. The free energies of solvation in chloroform and water

for different conformations are computed using the quantum mechanical and semiclassical

formalisms of the Miertus, Scrocco and Tomasi (MST) model. The results are compared

with values calculated by molecular dynamics simulations in the next chapter.

In Chapter 4 the isomerization reaction of calix[4]arene and p-tert-butyl-calix[4]arene in

vacuum and in chloroform are studied by molecular dynamics simulations. Three methods

are used to obtain the free energy as a function of the reaction coordinate: umbrella sampling

for a calix[4]arene in vacuum and in chloroform and a p-tert-butyl-calix[4]arene in a vacuum;

window sampling and a combined coupling parameter-umbrella sampling approach for a p-

tert-butyl-calix[4]arene in chloroform. The conformational inversion rates are calculated by

the reactive flux method and compared with experimental values.

In Chapter 5 we study pore formation in an amphiphilic bilayer, simulated by a coarse-

grained model. The free energy as a function of the reaction coordinate is calculated by the

thermodynamic integration method from data sampled with molecular dynamics simulations

5



1. INTRODUCTION

with a constrained reaction coordinate. We consider three cases: an unstretched bilayer and

bilayers with small (3.5%) and large (25%) relative elongations. To compare the results

with the macroscopic approach described in the next chapter, we convert the free energy as

a function of the computationally convenient reaction coordinate into the free energy as a

function of the pore radius.

In Chapter 6 we present simulations of a punctured amphiphilic bilayer under various

tensions, with a coarse-grained model. We propose a simple expression for the free energy of

a square bilayer containing a circular pore. The line tension coefficient is calculated by three

different approaches.

At the end of the thesis, the results are summarized in both English and Dutch.

6



2 Theory

2.1 Statistical Mechanics

Statistical mechanics relates the physical properties of a macroscopic system to the micro-

scopic properties of the atoms or molecules (particles) constituting this system. Due to the

tremendous number of particles in a macroscopic system, Statistical mechanics considers the

physical properties of a macroscopic system as an ensemble average by using statistics of the

microscopic states.

A microscopic state of a system consisting of N particles is described by a set coordinates

r1, r2, ..., rN � r3N and momenta p1, p2, ..., pN � p3N , and is represented by a point in

phase space. The microscopic state is a possible realization of a macroscopic system. The

collection of all independent realizations of a macroscopic system is called an ensemble. Here

we consider the canonical ensemble, regarding a system of N identical particles in a volume

V at an absolute temperature T . The probability to find this system in the volume element

dr3Ndp3N centered at the point r3N p3N phase space is given by the Boltzmann distribution,

ρ � r3N � p3N � dr3Ndp3N � 1
Q

1
h3NN!

exp ��� βH � r3N � p3N �
	 dr3Ndp3N , (2.1)

where β � 1 � kBT , kB is Boltzmann’s constant, h is Planck’s constant and H is the Hamilto-

nian, which determines the energy of the system as a function of its coordinates and momenta.

The factor 1 � N! accounts for the indistinguishability of the particles, and 1 � h3N connects the

classical mechanical and quantum mechanical distributions. The partition function Q is used

to normalize the distribution,

Q � 1
h3NN!

�
exp � � βH � r3N � p3N � 	 dr3Ndp3N . (2.2)

7



2. THEORY

The measured value of a macroscopic property F equals the ensemble average, being the

expectation value of the associated microscopic property f over the microscopic realizations:

F �� f � � 1
Q

1
h3NN!

�
f � r3N � p3N � exp � � βH � r3N � p3N � 	 dr3Ndp3N . (2.3)

This integral is generally impossible to calculate analytically. In molecular dynamics sim-

ulations the calculation of the macroscopic property F is founded on the ergodic hypoth-

esis [101], which states that the ensemble average is equal to the average over time, see

Section 2.4, f � � f � (2.4)

where the time average is,

f � lim
T � ∞

1
T

� T

0
f � r3N � t ��� p3N � t ��� dt. (2.5)

In other words, the dynamical evolution of a system for a sufficiently long period of time

serves as a representative sample of all possible realization.

At short (in a macroscopic sense) times the behavior of a system is well described by

the famous Onsager regression hypothesis [111, 112], which states that slow microscopic

fluctuations of f around equilibrium on average decay according to macroscopic laws: ∆ f � t � ∆ f � 0 � � �� � ∆ f � 0 ��� 2 � φ � t � , (2.6)

φ � t � is not just any function, but describes the dynamics of F , F � t ��� F � 0 � φ � t � , provided the

value of F � 0 � is small enough to lie in the linear regime. On the left hand side of this equation

we encounter a time correlation function, f � t � g � 0 � � � �
ρ � r3N � p3N � 0 � f � r3N � p3N � t � g � r3N � p3N � 0 � dr3Ndp3N . (2.7)

From this definition and time independence of ρ follows the property f � t � τ � g � τ � � �� f � t � g � 0 � � . (2.8)

After differentiating Eq. (2.8) with respect to τ and substituting τ � 0, an other property of

the correlation function is obtained: ḟ � t � g � 0 � � � �  f � t � ġ � 0 � � . (2.9)

Here and below a dot represents the derivative with respect to time.

8



2. THEORY

2.2 Reaction rate theory

The isomerization of calix[4]arene and p-tert-butyl-calix[4]arene studied in this thesis is the

reversible unimolecular reaction between reactants R and products P:

R
k f�
kr

P. (2.10)

This reaction is a bi-continuous process: reactants is turned into products, while simultane-

ously a fraction of the products is turned into reactants. The mass conservation law for this

reaction reads as

R � P � 1. (2.11)

The conversions per unit of time are described by phenomenological equations for the popu-

lation dynamics:

Ṙ � � k f R � krP, (2.12)

Ṗ � k f R � krP, (2.13)

where k f and kr are the rate constants of the forward and reverse reactions respectively. By

definition, the equilibrium constant of the reaction is the ratio of the rate constants K � kr � k f .

At equilibrium the left sides of Eqs. (2.12) and (2.13) equal zero and the equilibrium constant

can be expressed as the ratio of the equilibrium fractions,

K � Req

Peq
. (2.14)

Consider the deviation from equilibrium ∆P � t ��� P � t � � Peq. Combining Eqs. (2.13) and

(2.14), the relaxation of this deviation is given by

∆P � t ��� ∆P � 0 � exp ��� λ t � , (2.15)

where λ � k f � kr is the relaxation rate. Using Eq. (2.14) we can express the forward reaction

rate as

k f
� λPeq. (2.16)

The calculation of the forward reaction rate k f directly from Eq. (2.16) in a molecular dynam-

ics simulation is not possible for reactions with a high activation barrier, like the isomerization

9



2. THEORY

of a calix[4]arene, because the relaxation to equilibrium is too slow. Below we discuss the

calculation method of the reaction rate for such reactions.

2.2.1 Reactive flux method

In this thesis we restrict ourselves to reactions in systems with a low concentration of reacting

solute. In this case the reacting molecules do not interact with each other. Since the molecules

behave identically, it suffices to consider a single molecule.

We begin the microscopic consideration of the reaction with the introduction of a pa-

rameter that separates products and reactants. Such a parameter is the reaction coordinate

ξ , defined such that it is positive for products and negative for reactants. So, reactants and

products are divided by the transition state plane ξ � ξ �� , which is located in the thinly pop-

ulated area near the top of the energy barrier, separating reactants and products. The reaction

coordinate ξ is usually chosen to be a function of the coordinates of the reacting molecule

only [11, 29]. The probability for a molecule to be in the product state is obtained by sum-

ming over all realizations that classify as a product, p � � 1
Q

h � 3N

N!

�
Θ � ξ � ΓN �
� exp � � βH � ΓN ��� dΓN �! Θ � ξ � � , (2.17)

where Θ is the Heaviside step function. The probability for a molecule to be in the reactant

state is given by Eq. (2.17) with ξ replaced by � ξ . According to Onsager regression hy-

pothesis, Eq. (2.6), the average decay of a spontaneous deviation from equilibrium is given

as  ∆Θ � ξ � t ��� ∆Θ � ξ � 0 ��� � � ∆Θ � ξ � 0 �
�"� 2 � � exp �#� λ t � , (2.18)

where exp �#� λ t � is the macroscopic response from Eq. (2.15). Differentiating Eq. (2.18) with

respect to time we arrive at ∆Θ̇ � ξ � t �
� ∆Θ � ξ � 0 ��� � � ∆Θ � ξ � 0 �
�"� 2 � � � λ exp �#� λ t � . (2.19)

As mentioned above, the time interval interesting for simulations is τv $ t $ λ � 1, where τv

is a molecular vibrations time. On this time interval Eq. (2.19) can be rewritten with the help

of Eq. (2.9) as Θ � ξ � t �
� ξ̇ � 0 � δ � ξ � 0 ��� � � ∆Θ � ξ � 0 ���%� 2 � � λ , (2.20)

10



2. THEORY

where δ � ξ � is the Dirac delta function arising from differentiation of the Heaviside function.

Combining Eqs. (2.16) and (2.20), and using  ∆Θ2 � �� Θ2 �&�  Θ � 2 �' p �  r � , we obtain the

forward reaction rate

kRF
f � t ���  δ � ξ � 0 �
� ˙ξ � 0 � Θ � ξ � t ��� � Θ �(� ξ � 0 ��� � . (2.21)

The numerator of Eq. (2.21) equals the Boltzmann weighted average velocity of molecules

that cross the transition state at time zero and are found in the product state at time t: the

reactive flux. The denominator is just the equilibrium fraction of reactants. So the forward

reaction rate is given by the reactive flux (RF) theory as the ratio of the reactive flux of

molecules to the population of the reactant.

2.2.2 Transition state theory and transmission coefficient

The Eyring’s transition state theory (TST) expression [51] of reaction rate kT ST can be ob-

tained from Eq. (2.21) in the limit of time t going to zero. In TST the reaction rate depends

on the flux of molecules crossing the transition state in the forward direction at time zero:

kT ST
f � t ���  δ � ξ � 0 �
� ξ̇ � 0 � Θ � ξ̇ � 0 ��� � Θ � � ξ � 0 �
� � . (2.22)

Transition state theory gives an over-estimated value as compared to the true reaction rate,

because TST is based on the assumption that every reactant crossing the transition state will

end up as a product and does not take into account the possibility of rapid re-crossings [51].

As a compensation, the RF theory introduces a transmission coefficient, whose value lies

between zero and one [29, 74],

kRF
f

� κ kT ST
f ) (2.23)

Substitution of Eqs. (2.21) and (2.22) in Eq. (2.23) gives the expression for the transmission

coefficient κ ,

κ � t ���  δ � ξ � 0 ��� ξ̇ � 0 � Θ � ξ � t �
� � δ � ξ � 0 �
� ξ̇ � 0 � Θ � ξ̇ � 0 ��� � . (2.24)

The numerator of Eq. (2.24) is the reactive flux. For very short times both fluxes are almost

the same and κ � 1. Due to re-crossings the reactive flux, and therefore the transmission

11



2. THEORY

coefficient, reduces in time. If the energy barrier is high, and the energy transfer to the

solvent is efficient, then only those molecules that are still near the transition state are capable

of recrossing. Once the molecule has reached the reactant or product state, and its excess

energy has been dissipated by the solvent, it will only recross on a time scale associated with

the reaction rate itself. This suggests that κ � t � shows rapid transient decay from a value of

one to a plateau value κplateau in the time interval 0 * t $ λ � 1 and exponential decay at time

scales of the order of 1 � λ . The true reaction rate in Eq. (2.23) is calculated with κplateau,

kRF
f

� κplateau kT ST
f . (2.25)

Clearly, the transmission coefficient can be calculated from short MD simulations, with start-

ing configuration sample from the transition state. The TST rate can be expressed as

kT ST �  ξ̇ � 0 � δ � ξ � 0 �
� Θ � ξ � 0 �
� � δ � ξ � 0 �
� �  δ � ξ � 0 �
� � Θ � ξ � 0 �
� � , (2.26)

where the first fraction is the readily established average velocity of molecules crossing the

transition state. The second fraction denotes the probability for a reactant to reach the tran-

sition state, which forms the major bottle neck in MD studies of reactions. In Section 2.6

we discuss several approaches to calculate the probability distribution P � ξ � , or free energy

function

A � ξ ��� � kT lnP � ξ � . (2.27)

2.3 Free energy of a membrane

Just like the above introduced free energy describes the probability distribution of the reaction

coordinate, irrespective of the other coordinates, Helfrich’s theory [78] for the free energy of a

bilayer gives the probability to find a bilayer with a certain global shape, without considering

the positions of all atoms constituting the bilayer. In this model the shape of the membrane

is assumed to vary smoothly along the membrane. The local shape of the membrane surface

can be characterized by the principal curvatures k1 and k2 or by the mean curvature H �� k1 � k2
� � 2 and the Gaussian curvature K � k1k2 [84]. Taking also into account uniformly

distributed stretch or compression, the expression for the free energy of a membrane takes

12
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the form [42, 78, 122, 133]

F � �,+
2κ � H � c0

� 2 � κ̄K - da � 1
2

KAA0 . A � A0

A0 / 2

, (2.28)

The spontaneous curvature c0is the curvature energy per unit area of a flat membrane (k1
�

k2
� 0) and reflects the tendency of a flat membrane to bend due to non-vanishing internal

stresses. For the bilayer studied in Chapters 5 and 6, the spontaneous curvature vanishes.

The bending modulus κ measures the curvature energy caused by the deviation from the

spontaneous curvature. The saddle-splay modulus κ̄ relates to saddle-like deformations. KA

is the compressibility modulus, and A0 and A are the equilibrium and actual surface area

respectively.

In Chapter 5 and 6 we extend the model by introducing a term describing the edge energy

of a pore. The radius of the pore will then serve as the reaction coordinate.

2.4 Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations [8, 56] reproduce the dynamical evolution of a sys-

tem at a molecular (atomic) level by using classical mechanics (or quantum mechanics, if it

is necessary). Such an approach allows us to obtain not only statistical averages (see Sec-

tion 2.1) but also dynamical properties of the system (see Eq. (2.24)). In that way, MD serves

as an experiment of mechanical statistics.

Consider a system consisting of N atoms. The position of atom i with mass mi at each

moment of time t is described by a radius vector ri � t � . The motion of atom i is determined

by the Newton’s equations of motion,

mir̈i
� fi, (2.29)

fi
� � ∇iΦ � rN � , (2.30)

where fi is the force acting on the atom i and Φ � rN � is the potential energy function. We

consider potential energy functions in more detail Section 2.5.

The system of N coupled differential Eqs. (2.29) and (2.30) can be solved numerically.

One of the methods to integrate this system step by step is the leap-frog Verlet algorithm. This

method is based on a Taylor expansion of the position ri at time tn � t0 � n∆t. For sufficiently

13
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small time step ∆t,

ri � tn 0 ∆t �1� ri � tn � 0 ṙi � tn � ∆t � 1
2

r̈i � tn � ∆t2 0 1
6

...r i � tn � ∆t3 � o � ∆t4 � . (2.31)

The recursion relation between the velocity at the former and the new step reads as:

vi . tn � ∆t
2 / � vi . tn � ∆t

2 / � ∆t
mi

∇iΦ � rN � tn �2� � o � ∆t3 � , (2.32)

subject to Eqs. (2.29)and (2.30). The recursion relation for the coordinates is given by:

ri � tn � ∆t �1� ri � tn � � vi . tn � ∆t
2 / ∆t � o � ∆t4 � . (2.33)

One of the most important parameters of any simulation is the time step. Increasing the

time step accelerates the sampling of the system, but the numerical accuracy of the integration

algorithm sets an upper limit to the step size. The common way to increase the time step of

a simulation is to fixate intramolecular bond lengths. This is possible because the high-

frequency vibrations of these bonds have almost no influence on the other motions in the

system. Constraining the bond length σ �43 ri j
3 between two atoms i and j to the constant

value σ 5 gives rise to an extra force in Newton’s equation of motion for atoms i,

mir̈i � t ��� fi � t � � λσ � t �76∇iσ � t � , (2.34)

where λσ is the Lagrange multiplier chosen such that the constraint is satisfied at every mo-

ment. The new position of atom i j after one time step ∆t according to the Verlet algorithm

and Eq. (2.34) reads

ri � t � ∆t ��� r8i � t � ∆t � � ∆t2

mi
λσ � t � 6∇iσ � t � , (2.35)

where the prime denotes the position of atom i at time t � ∆t in the absence of the constraint.

The Lagrange multiplier is found by solving 3 ri j � t � ∆ �939� σ 5 to first order, and iterating this

step till the desired accuracy is reached. For a system of many constraints, this procedure is

iterated over all constraints until all constraints are obeyed simultaneously. This calculation

scheme for constraining bond lengths constraining was proposed by Ryckaert et al.and is

known as the SHAKE algorithm [121]. In Section 2.6.1 and Chapters 5 and 6 the constraint

of the reaction coordinate will be performed in the same way.

14



2. THEORY

2.5 Potential

The execution of an MD simulation requires knowing the potential energy of a system as

a function of the coordinates, Φ � rN � . In most cases the potential energy is introduced by

an empirical function. This function incorporates potentials for intramolecular interactions

— bond stretching, angle bending, o-o-p bending (improper dihedral) out of plane bending,

torsional rotation (dihedral) and Urey-Bradley for 1-3 interactions — and for intermolecular

interactions — Lennard-Jones for Van der Waals interactions and Coulombic for electrostatic

interactions

Φem � rN ��� 1
2

bonds

∑
i � 1

kb
i � bi � b0

i
� 2 � 1

2

angles

∑
i � 1

kθ
i � θi � θ 0

i
� 2 � 1

2

impropers

∑
i � 1

kw
i � wi � w0

i
� 2

� dihedrals

∑
i � 1

kφ
i

+
1 � cos � nφi � δi

� -:� 1
2

Urey- Bradley

∑
i � 1

kUB
i � ui � u0

i
� 2 (2.36)

� N

∑
j ; i < 4εi j = . σi j

ri j / 12 � . σi j

ri j / 6 > � qiq j

4πε0ri j ? .

The coefficients and parameters can be determined by quantum chemical calculations com-

bined with vibration spectra, thermophysical and phase coexistence data.

The empirical potential is not suitable for studying the solvent effect in case of a strong

self-polarization between the solute and the solvent. One alternative is a combined quantum

mechanical/molecular mechanical method (QM/MM). In this method the solute is treated

quantum mechanically and the explicit solvent molecules are simulated by using the empirical

potential (Φem) Eq. (2.36),

Φpot
� ΦQM � Φem � ΦQM/MM. (2.37)

where the potential ΦQM/MM couples the two regions. The potential energy ΦQM is calculated

from the time-independent Schrödinger equation with a Hamiltonian,@
H � � h̄2

2m
∆ � Φ � x � y � z � , (2.38)

where the first term on the right hand side is an operator associated with the kinetic energy

and the second term gives the potential energy for the electron interactions. An other alter-

native is the supermolecule approach, in which the solute and a few solvent molecules are

treated quantum mechanically, one may even study dynamics of the system fully quantum

mechanical e. g. by using the method of Carr and Parrinello [27].
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2.6 Free energy calculation

The calculation of free energies is an essential task for the physical description of activated

processes. It provides information on the locations and populations of the stable states and the

transition states, and hence on the transition rates. Reaction rate theory introduces a conve-

nient way for the theoretical treatment of an activated processes via the reaction coordinate ξ ,

see Section 2.2. Consequently, the free energy is calculated here as a function of the reaction

coordinate.

This free energy is determined as

A � ξ ��� � kBT lnQ � ξ � , (2.39)

where the partition function Q � ξ � reads

Q � ξ ��� �
δ � ξ � r3N � � ξ 5 � exp � � βH � r3N � p3N � 	 dr3Ndp3N . (2.40)

So the free energy function A � ξ � can be obtained by making a probability distribution of ξ for

a system that is free to sample the entire range of the reaction coordinate. But it is extremely

inefficient to do so for a system with a high energy barrier (as studied in this thesis) because

the system spends most of its time in the stable states and the barrier region will be sampled

very poorly. The two methods described below are applied in this thesis in order to eliminate

this sampling problem.

2.6.1 Potential of mean constraint force

The main idea of the potentail of mean constraint force method(PMCF) is to apply a constrain

to the reaction coordinate. On the one hand, the system is thus forced to sample the entire

range of the reaction coordinate. On the other hand, one intuitively feels that the constrain

force is closely related to the derivative of the free energy. This insight by van Gunsteren

[146] was put on a firmer footing by Mülders, Schlitter et al. [106], and was eventually

proven by den Otter and Briels [38] of the various re-derivations and extensions presented in

the literature [34, 40, 41, 134]. We follow that of Schlitter and Klähn [126] here.

The partition function of a reaction coordinate constrained system is:

Qc � ξ ��� �
exp � � βHc � ξ � q3N � 1 � p3N � 1

q
� 	 dq3N � 1dp3N � 1

q , (2.41)
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Ac � r ��� � kBT lnQc � ξ � , (2.42)

where q3N � 1 denotes the unconstrained coordinates, p3N � 1
q are their canonical momenta, and

Hc � ξ � q3N � 1 � p3N � 1
q

� is the Hamiltonian of the constrained system. From the Eqs. (2.39) and

(2.42), the free energy change of an unconstrained system dA � dr is given by

dA
dr

� dAc

dr
� kBT

d
dr

ln
Q � r �
Qc � r � . (2.43)

The first term on the right hand side of Eq. (2.43) is the free energy derivative of the con-

strained system; it equals the ensemble average of the constraint force in the constrained

ensemble [106]:

dAc

dr
�� λξ � c, (2.44)

where λξ is the previously introduced Lagrange multiplier of the constraint force. The cor-

rection term in Eq. (2.43) stems from the integral over the conjugate moment to ξ , which is

implicit in Q but excluded in Qc because ẋi � 0 in the constrained ensemble. As Schlitter and

Klähn [126] showed,

Q � r �
Qc � r � � const A  z � 1 B 2 � c, (2.45)

where z is the metric tensor

z � ∑
i

1
mi

. ∂ξ
∂ri / 2

. (2.46)

Integrating Eq. (2.43) after substituting Eqs. (2.44) and (2.45), the free energy can be rewrit-

ten as

A � ξ ��� �  λξ � c dξ � kBT ln  z � 1 B 2 � c. (2.47)

Thus the free energy as a function of the reaction coordinate can be calculated from MD

simulations performed with a constrained reaction coordinate according to Eq. (2.47).

2.6.2 Umbrella sampling method

The umbrella sampling method is based on the notation that a reduction of the free energy

differences between the stable conformations and the transition state improves the sampling
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of the reaction coordinate. This is achieved by adding an “umbrella” potential U � r3N � to the

existing potential energy of the system. The probability distribution of the system with the

umbrella potential reads

PU � ξ �C� 1
QU

h � 3N

N!

�D�
δ � ξ � r3N � � ξ 5 � exp ��� β

+
H � r3N � p3N � � U � r3N � - 	 dr3N dp3N . (2.48)

In case the umbrella potential is a function of the reaction coordinate only, the distribution in

the biased run is easily converted into the probability distribution of the unbiased run,

P � ξ ��� const A PU � ξ � exp � βU � ξ ��� , (2.49)

where const is an irrelevant proportionality constant. The particular choice U � ξ �E� � A � ξ �
would make PU a constant, independent of ξ . To calculate the free energy A � ξ � , long simula-

tion with a trial umbrella potential U0 is performed. Then the sampled probability distribution

is converted into a potential U1 according to

U1 � ξ ��� � kBT lnP � ξ � . (2.50)

The new trial umbrella potential U0 � U1 is used for a second simulation and so on, until

the probability distribution is reasonably flat. The umbrella potential of the run with the flat

distribution gives the free energy as a function of the reaction coordinate.
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3
Impact of the solvent

on the conformational

isomerism of calix[4]arenes:

a study based on continuum

solvation models

The influence of solvation on the conformational isomerism of calix[4]arene and

p-tert-butyl-calix[4]arene has been investigated by using the continuum model

reported by Miertus, Scrocco and Tomasi (MST). The quantum mechanical (QM)

and semiclassical (SC) formalisms of the MST model have been considered for

two different solvents (chloroform and water). The suitability of the QM-MST

and SC-MST methods has been examined by comparison with previous results

derived from classical molecular dynamics (MD) simulations with explicit sol-

vent molecules. The application of the continuum model to the solute config-

urations generated by using in vacuo classical MD simulations provides a fast

strategy to evaluate the effects of the solvent on the conformational preferences

of calixarenes. These encouraging results allow us to propose the use of contin-

uum models to solutes with complex molecular structures, which are tradition-

ally studied by MD simulations. 5
3.1 Introduction

An understanding of many chemical process cannot be achieved without an accurate de-

scription of the solvent effects [114, 119, 149]. In the past decades, this realization has

led to the development of a wide variety of computational methods, which are able to de-

scribe the effects of the solvent on molecular energies, structures and properties. SuchF The work described in this chapter previously appeared in J. Org. Chem. 69, 951 (2004) [4].
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cone saddle paco

Figure 3.1: Atomistic representation of the cone, saddle and paco conformations for 1.

methods can broadly be classified into two different categories: discrete and continuum

[31, 59, 83, 114, 143, 148]. The discrete model considers explicitly the microscopic rep-

resentation of the solvent molecules. This model is rigorous and accurate results can be

expected, although serious shortcomings derived from its computational expensiveness ex-

ist. In practice, the solvated system is usually described according to one of the following

three approaches [59, 83, 114, 148]: a) supermolecule approach (the solute and the solvent are

treated quantum mechanically and, therefore, only a few molecules can be explicitly included

to mimic the whole environment surrounding the solute), (b) quantum mechanics/molecular

mechanics (QM/MM) approach (the solute is treated quantum mechanically and the explicit

solvent molecules are simulated using a classical force-field), (c) molecular mechanics (MM)

approach (both the solute and the solvent are described by means of classical particles).

The accuracy of the results produced by each approach depends on several factors as

the size of the solute, the number of solvent molecules considered, the magnitude of the

contribution due to the self-polarization between the solute and the solvent, the goodness of

the fixed classical potentials, etc.

In the continuum model the solvent is represented as a structureless polarizable medium

characterized by properties such as the dielectric constant and the thermal expansion coeffi-

cient [31, 114, 143]. The macroscopic continuum medium reacts against the solute charge

distribution, generating a reaction field that in turn affects the solute charge distribution. Thus,

the self-polarization between the solute and the solvent is accounted for properly by using QM

methods. The continuum model has the obvious shortcoming that short-range interactions be-
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2: R= t-Bu

Figure 3.2: Schema

tween solute and solvent are not well represented. This deficiency is partially removed by the

combined continuum/discrete strategy [2, 3, 28, 30], in which the solute is surrounded by an

appropriate number of explicit solvent molecules, and then this cluster, as a unique entity, is

inserted in the continuum medium.

Complex organic molecules are the subject of intensive investigations in the field of

supramolecular chemistry. Among them, calixarenes have received considerable attention

because these compounds are able to bind a variety of guests [81, 153]. Calixarenes are syn-

thetic macrocyclic molecules built from phenolic units. The simplest representative of these

macrocycles is the calix[4]arene (1), which only involves four phenol rings (Figure 3.2).

Many other compounds have been prepared by introducing selective chemical modifications,

the more common being at the phenolic hydroxy group, the para-position of the rings, and

the methylene bridges [18, 87, 116, 132].

The conformational flexibility of 1 and its derivatives mainly arises from an oxygen-

through-the-annulus rotation mechanism. The most relevant conformations are those denoted

cone and partial-cone (paco), which differ in the orientation of one phenol ring with respect

to the other three (Figure 3.1). NMR spectroscopy results indicated that, in some cases, the

dynamic equilibrium between the cone and paco conformations is profoundly influenced by

the polarity of the solvent [26, 81, 82, 132, 145]. This conformational isomerism has been

investigated by using theoretical methods in which the solvent is either neglected [17, 53, 132,

145] or described using a discrete model through the MM approach [36, 39, 65, 142, 150],
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the rates calculated with the latter method for the isomerization of calix[4]arene being in

excellent agreement with experimental data [36, 39, 142].

As far as we know, the continuum model has not previously been used to investigate the

role of the solvent in the cone-to-paco conformational transition. This is an amazing situation

since the application of this model to medium size molecules such as calix[4]arenes is com-

putationally less expensive than the simulation of a periodic box containing many discrete

solvent molecules. It should be noted that the inclusion of explicit solvent molecules implies

that many configurations must be generated using molecular dynamics (MD) or Monte Carlo

(MC) simulations to obtain a statistical treatment of the intermolecular interactions. Further-

more, the continuum model has successfully been employed to study the binding properties of

calix[4]pyrrole [21, 156], a closely related compound with pyrrole rings rather than phenolic

units, indicating that it provides a good description of molecules with complex architectures

in solution.

The aim of this work is to investigate the isomerization of calixarenes by using the contin-

uum model. For this purpose, the MST model [12, 93, 96, 113, 114], which is an optimized

version of the method developed by Miertus, Scrocco and Tomasi [103, 104, 143], has been

used to explore the role of the solvent in the cone-to-paco transition of 1 and p-tert-butyl-

calix[4]arene (2). Calculations have been performed considering the polarization effects

within the QM and semiclassical (SC) frameworks of the MST model. Thus, a compari-

son between the results derived from QM-MST and SC-MST calculations will be valuable

to check the reliability of the latter method when complex organic molecules are considered.

Particular attention has been paid to the parametrization of the charges in SC-MST calcula-

tions. Furthermore, we have also studied the influence of the polarity of the environment by

considering both chloroform and water as solvents.

3.2 Methodology and Technical Details

3.2.1 Generation of the Conformations

Three different conformational states (Figure 3.1) were considered for 1 and 2: (i) the cone;

(ii) the paco; and (iii) the saddle point, which corresponds to the transition state of the cone-

to-paco transformation. It should be noted that thermal motion provides a certain degree
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of conformational freedom to such states. Accordingly, 100 configurations were generated

for each conformational state through MD simulations with classical potentials. The force-

field parameters for 1 and 2 were identical with those used in refs 12 and 13a. Simulations

were performed in vacuo at 300 K, no cutoff being used for the nonbonding interactions.

Configurations of the saddle point were generated using constrained MD simulations. All

calculations were performed with the GROMOS87 [16] and DL POLY 2 ) 0 [130] computer

packages.

3.2.2 The MST Continuum Model

In the MST model, the solute is placed inside a molecular shape cavity embedded in the

infinite dielectric medium. The free energy of solvation (∆Gsol) is estimated from the addition

of the electrostatic, cavitation and van der Waals contributions [12, 93, 96, 113].

∆Gsol
� ∆Gele � ∆Gcav � ∆GvdW (3.1)

The cavitation term has been computed using Pierotti scaled particle theory [118] adapted

to molecular-shaped solutes [12, 93, 96, 113, 114]. In Eq. (3.2), ∆GPG i is the cavitation free

energy of atom i in Pierotti’s formalism, Si is the solvent-exposed surface of atom i, ST is the

total solvent-exposed surface of the molecule and N is the number of atoms.

∆Gcav
� N

∑
i � 1

Si

ST
∆GPG i (3.2)

The van der Waals term has been evaluated by means of an empirically developed [12,

93, 96, 113] linear relation with the molecular surface area,

∆GvdW
� N

∑
i � 1

ξiSi (3.3)

where ξ is the surface parameter of atom i. Specific surface parameters have been derived for

different solvents [12, 33, 93, 96, 113].

The electrostatic interaction between the solute and the solvent has been calculated by

using the procedure originally developed by Tomasi and co-workers [103, 104, 143]. Ac-

cordingly, the polarization of the dielectric by the solute charge distribution induces a reac-

tion field, whose effect on the solute charge distribution is accounted for by a perturbation
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operator
@
VR added to the gas-phase Hamiltonian in vacuo,

@
H0:@

H � @
H0 � @

VR (3.4)

The perturbation operator is described in terms of a set of imaginary charges spread over

the solute cavity (Eq. (3.5)), which are obtained by solving the Laplace equation with suitable

boundary conditions (Eq. (3.6)). In Eq. (3.5), M is the total number of surface elements in

which the solute/solvent boundary is divided, and
+
q j - is the set of charges (located at r j) that

represent the solvent response. In Eq. (3.6), ε is the solvent dielectric constant, VT stands for

the total (solute+solvent) electrostatic potential, and n is the unit vector normal to the surface

element j. From these charges, the ∆Gele can be obtained by using a QM or SC formalism.@
VR

� M

∑
i � 1

qi3 ri � r 3 (3.5)

q j
� � ε � 1

4πε
S j . ∂VT

∂n / j
(3.6)

Choice of the solute/solvent interface is very important to provide reliable values of the

electrostatic contribution. In the MST method the solvent-exposed surface, which is obtained

upon an appropriate scaling of the atomic radii, is used to define the solute/solvent boundary.

To avoid the presence of regions of dielectric medium that are too thin to accommodate a

real solvent molecule, the scaling factor (κ) was specifically derived for each solvent. MC

simulation indicated that the best values of κ for chloroform and water are 1.6 and 1.2 [12,

93, 96, 113], respectively, which were used throughout the study.

3.2.3 Quantum Mechanical Formalism of the MST Model

(QM-MST)

If a QM formalism is used, the electrostatic contribution is determined as follows:

∆Gele
�IH ψsol JJJJ @H0 � 1

2

@
VR

JJJJ ψsol K �ML ψ0 JJ @H0 JJ ψ0 N (3.7)

where ψ is the solute wave function, and indices “0” and “sol” represent gas-phase and sol-

vent environments, respectively. QM-MST calculations were performed by using the opti-

mized versions developed for the semiempirical AM1 wave function [44], which are imple-

mented in the modified version of the MOPAC [135] program.
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3.2.4 Semiclassical Formalism of the MST Model (SC-MST)

In the classical framework ∆Gele adopts the expression indicated in Eq. (3.8), where
+
Qi -

and
+
qk - correspond to the sets of partial charges that represent the charge distribution of the

solute and the solvent reaction field, and where ri and rk stand for the position vectors of the

solute and solvent charges, respectively.

∆Gele
� 1

2

N

∑
i � 1

M

∑
k � 1

Qiqk3 ri � rk
3 (3.8)

To account for the contribution arising from the solute-solvent polarization effects, which

are neglected in Eq. (3.8), ∆Gele can be expressed as [94, 95, 115]:

∆Gele
� 1

2

N

∑
i � 1

M

∑
k � 1

Q0
i qk � Qsol

i
�3 ri � rk

3 (3.9)

where
+
Q0

i - and
+
Qsol

i - are the charge distributions of the solute in the gas phase and in

solution, respectively, and
+
qk � Qsol

i
� - is the solvent reaction field computed from the charges

that represent the fully relaxed charge distribution of the solute in solution. In the SC-MST

procedure the electrostatic interaction between the solute and the solvent is evaluated by using

Eq. (3.9) rather than Eq. (3.7) [94, 95, 115].

Obviously, the reliability of the SC-MST procedure largely depends on
+
Q0

i - and
+
Qsol

i - .

In the present study electrostatic potential-derived charges centered at the nuclei were com-

puted at the ab initio HF/6-31G(d) level [77] by using the Gaussian 98 computer program

[57]. The influence of the strategy used to derive
+
Q0

i - and
+
Qsol

i - was examined considering

three different approaches:

Approach-1 (A1). Charges were computed only for the cone, which is the most sta-

ble conformation of both 1 and 2, the electrostatic parameters for the paco and saddle being

directly transferred from those of the cone. Furthermore, the four chemically equivalent frag-

ments contained in the compounds under study (each fragment contains a phenolic ring and

a methylene bridge) were constrained to have identical site charges. This approach closely

follows the standard practice in MM of assigning identical charges to equivalent groups.

Approach-2 (A2). The dependence of the charges upon the conformation was taken into

account. A specific set of atomic charges was computed for each of the three conformational

states by using the procedure described above. However, chemically equivalent fragments

were still required to have identical site charges within each state.

25



3. IMPACT OF THE SOLVENT ON THE CONFORMATIONAL ISOMERISM OF CALIXARENES

Approach-3 (A3). A set of parameters was developed for each conformation like above

(A2), but no constraint was applied in the parametrization. Thus, each phenol was allowed

to have its own set of atomic charges. For the paco and saddle large differences were found

between the charges of the rotated phenolic unit and the other three, even although some

differences were also detected among the latter.

For the three approaches, we included the effects produced by small thermal atomic mo-

tions on electrostatic parameters by evaluating the charges on several representative con-

figurations of each conformation, and weighting them according to Boltzmann’s distribu-

tion [7, 120].

3.3 Results and Discussion

3.3.1 Quantum Mechanical Calculations

The ∆Gsol values were computed for the cone, saddle and paco conformations of 1 and 2

by using QM-MST calculations. A set of 100 configurations, which were generated through

MD simulations in a vacuum, was considered for each conformational state. Results are

displayed in Table 3.1 and Table 3.2, which also show the effect of the solvent on the isomer-

ization barrier [∆∆Gsol(cone-saddle)] and on the reaction equilibrium between cone and paco

[∆∆Gsol(cone-paco)].

The solvation of both 1 and 2 is more favorable in chloroform than in water. Thus, the free

energy to transfer such compounds in the cone conformation from water to the organic solvent

is -12.3 kcal and -26.6 kcal/mol, respectively. Similar values are predicted for the saddle

(-10.6 and -26.2 kcal/mol, respectively) and paco (-10.6 and -25.4 kcal/mol, respectively)

conformations.

On the other hand, QM-MST calculations indicate that the influence of the organic solvent

on the isomerization barrier is negligible for 1 and small for 2. Thus, the∆∆Gsol(cone-saddle)

predicted in chloroform solution for 1 is 0.0 kcal/mol, which is good agreement with the

value previously estimated by using a discrete solvation model through MD simulations (0.7

kcal/mol) [36]. Accordingly, the interactions between the solute and the bulk solvent are

predicted to be similar for these two conformational states.

The value provided in Table 3.2 for 2 (-1.2 kcal/mol) indicates that the interactions of bulk

26



3. IMPACT OF THE SOLVENT ON THE CONFORMATIONAL ISOMERISM OF CALIXARENES

chloroform with tert-butyl substituents are slightly more favorable for the saddle than for the

cone. This feature was not fully supported by MD simulations, the estimations provided by

different sampling schemes being 0.0 (windows umbrella sampling) and 0.3 kcal/mol (com-

bined coupling parameter-umbrella sampling) [142]. However, the deviation between QM-

MST and MD (1.2-1.5 kcal/mol) is within the error currently accepted when very different

models are compared [32, 58, 63, 79].

The solvent-induced barriers decrease to -1.7 and -1.6 kcal/mol for 1 and 2, respectively,

when the environment is bulk water. The variation of the barrier with the polarity of the

environment is consistent with the features detected by Kollman and co-workers [65] using

MD simulations, and indicates that the hydration of the cone is worse than that of the saddle.

The ∆∆Gsol(cone-paco) predicted in chloroform solution for 1 and 2 is 0.3 and -0.3

kcal/mol, respectively. Thus, the solvation predicted by QM-MST is similar for the two

conformations even when the phenol ring is substituted in the para position by the tert-butyl

group. The values derived from MD simulations were 1.3 and 1.6 kcal/mol for 1 and 2,

respectively.

Again, the differences between the results provided by continuum and discrete models

are within an acceptable interval. On the other hand, the paco conformation is clearly better

hydrated than the cone in all cases, as was also predicted by MD simulations [150]. It is inter-

esting to examine the influence of the number of configurations considered for each confor-

mational state on ∆Gsol . Figure 3.3 shows the values of the ∆Gsol in aqueous solution for the

configurations generated to represent the saddle conformation of 1. Each point corresponds

to one of the 100 configurations generated by MD simulations whereas the solid line displays

the final weighted average. It is worth noting that ∆Gsol ranges from -8.4 to -11.6 kcal/mol

indicating that this thermodynamic parameter is considerably affected by small atomic dis-

placements. Thus, to predict free energy differences associated with conformational changes,

a significant number of configurations must be used to represent each conformational state

of flexible molecules. In this case the mean ∆Gsol values are converged after O 30 configura-

tions.

Similar results were obtained for the cone and paco conformations of 1 and for 2, the

∆Gsol values ranging in these cases (in absolute values) from 7.8 to 10.1 kcal/mol (cone, 1),

8.4-11.2 kcal/mol (paco, 1), 7.0-10.1 kcal/mol (cone, 2), 7.7-11.2 kcal/mol (paco, 2) and 9.3-
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Table 3.1: Free energies of solvation (∆Gsol, in kcal/mol) in chloroform and water computed

for the cone, saddle and paco conformational states of 1a (see Fig. 3.2) using different for-

malisms of the MSTb model. The influence of the solvent on the conformational isomerism

of this compound is expressed in terms of ∆∆Gsol.

QM SC(A1) SC(A2) SC(A3)

chloroform ∆Gsol(cone) -21.6 -22.2 -22.2 -22.8

∆Gsol(saddle) -21.6 -24.4 -23.4 -22.7

∆Gsol(paco) -21.3 -25.0 -23.7 -22.8

∆∆Gsol(cone-saddle) 0.0 -2.2 -1.2 0.1

∆∆Gsol(cone-paco) 0.3 -2.8 -1.5 0.0

water ∆Gsol(cone) -9.3 -14.1 -14.1 -14.8

∆Gsol(saddle) -11.0 -18.9 -16.6 -16.1

∆Gsol(paco) -10.7 -20.5 -17.7 -16.2

∆∆Gsol(cone-saddle) -1.7 -4.8 -2.5 -1.3

∆∆Gsol(cone-paco) -1.4 -6.4 -3.6 -1.4

aA set of 100 configurations were considered for each conformational state. bMST: Miertus, Scrocco and Tomasi

solvation model. QM: quantum mechanical at the semiempirical AM1 level. SC(A1): semiclassical-approximation

1; SC(A2): semiclassical-approximation 2. SC(A3): semiclassical-approximation 3. For a more detailed description

of the methods used to evaluate the ∆Gsol see the Methods section.

28



3. IMPACT OF THE SOLVENT ON THE CONFORMATIONAL ISOMERISM OF CALIXARENES

Table 3.2: Free energies of solvation (∆Gsol, in kcal/mol) in chloroform and water computed

for the cone, saddle and paco conformational states of 2a (see Fig. 3.2) using different for-

malisms of the MSTb model. The influence of the solvent on the conformational isomerism

of this compound is expressed in terms of ∆∆Gsol.

QM SC(A1) SC(A2) SC(A3)

chloroform ∆Gsol(cone) -35.9 -36.2 -36.2 -38.3

∆Gsol(saddle) -37.1 -38.7 -37.8 -39.1

∆Gsol(paco) -36.2 -41.3 -39.8 -38.8

∆∆Gsol(cone-saddle) -1.2 -2.5 -1.6 -0.8

∆∆Gsol(cone-paco) -0.3 -5.1 -3.6 -0.5

water ∆Gsol(cone) -9.3 -11.3 -11.3 -10.7

∆Gsol(saddle) -10.9 -17.7 -14.4 -13.1

∆Gsol(paco) -10.8 -19.1 -15.2 -12.4

∆∆Gsol(cone-saddle) -1.6 -6.4 -3.1 -2.4

∆∆Gsol(cone-paco) -1.7 -7.8 -3.9 -1.7

aA set of 100 configurations, which were generated by using molecular dynamics simulations, were considered

for each conformational state. bMST: Miertus, Scrocco and Tomasi solvation model. QM: quantum mechanical

at the semiempirical AM1 level. SC(A1): semiclassical-approximation 1; SC(A2): semiclassical-approximation 2.

SC(A3): semiclassical-approximation 3. For a more detailed description of the methods used to evaluate the ∆Gsol

see the Methods section.
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Figure 3.3: ∆Gsol in aqueous solution calculated by using the QM-MST method for 100

configurations of the cone (a), saddle (b) and paco (c) conformational states of 1. The solid

line corresponds to the final weighted average value.
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11.7 kcal/mol (saddle, 2). These variations are smaller (typically 50% less) in chloroform

solution. It should be noted that the influence of the solvent on the internal degrees of freedom

of the solute is usually accounted for by discrete methods based on MM. However, these

simulations are computationally very demanding, since most of the computer time is spent

on sampling the solvent configurational space. The combination of the continuum approach

to represent the solvent with the solute configurations generated by MD simulations in vacuo

provides a useful alternative to discrete methods to represent flexible molecules in solution.

3.3.2 Semiclassical Calculations

∆Gsol values derived from SC(A1)-, SC(A2)- and SC(A3)-MST calculations are included in

Table 3.1 and Table 3.2. It is worth noting that the reliability of the SC-MST results strongly

depends on the quality of the atomic charges used to describe the QM electronic distribution

of the solute. The influence of the electrostatic parameters on the ∆Gsol values predicted by

this method has been examined by computing the mean unsigned difference with respect to

the QM-MST results (Table 3.3).

The poor results provided by the SC(A1)-MST method, which involves many of the ap-

proximations typically applied in classical MM, are surprising and even disturbing. The mean

unsigned differences are 2.3 and 6.6 kcal/mol in chloroform and aqueous solution, respec-

tively, which arise from the unsatisfactory description of the ∆Gsol for the paco and saddle

conformations. Furthermore, the influence of the solvent in the ∆∆Gsol(cone-saddle) barrier

was overestimated by 2.2 and 1.3 kcal/mol (in absolute value) for 1 and 2, respectively, in

chloroform solution, and by 3.1 and 4.8 kcal/mol in aqueous solution. The error is even

larger in the difference ∆∆Gsol(cone-paco): 3.1 and 4.8 kcal/mol for 1 and 2, respectively,

in chloroform solution, and 5.0 and 6.1 kcal/mol in aqueous solution. These results clearly

indicate that the atom-centered charges derived from the cone conformation are not able to

represent the QM electronic distribution of the saddle and paco states. This deficiency could

be avoided by deriving explicit charge models for each conformation, as was described in the

Section 3.2 (Approximation 2).

Results provided by the SC(A2)-MST formalism indicate a significant improvement with

respect to those obtained with the SC(A1)-MST one. As is reflected in Table 3.3, the mean
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Table 3.3: Mean unsigned difference (in kcal/mol) between the free energies of solvation

determined from QM-MST and SC-MST calculations on the three conformational states of 1

and 2.

method MST chloroform water

SC(A1) 2.3 6.6

SC(A2) 1.6 4.5

SC(A3) 1.8 3.5

unsigned difference decreases by about 30% in both chloroform and water. Furthermore, the

∆∆Gsol values predicted by the former method are smaller than those computed by using the

latter one by about a half. This reduction is similar for the two solutes, indicating that for so-

lutes with complex electron distributions, like calixarenes, the electrostatic parameters cannot

be transferred routinely among different conformations. Despite this notable improvement,

a detailed inspection of Table 3.1 and 2 shows that the conformationally dependent charges

still produce significant errors, the ∆∆Gsol values computed with the SC(A2)-MST method

being approximately twice as large as those predicted by QM-MST. This feature motivated

the investigation of a new model in which the electrostatic parameters are accurately obtained

(Approximation 3) not only for each conformation but also for each fragment of the molecule.

The ∆∆Gsol values obtained for 1 and 2 using the SC(A3)-MST formalism are in excellent

agreement with those produced by the QM-MST method. Thus, although the ∆Gsol obtained

with the SC(A3)-MST and SC(A2)-MST methods present similar unsigned differences with

respect to the QM-MST ones, a marked improvement is achieved by the latter approxima-

tion in the relative values. This is specially notable for 1, where the largest difference with

respect to the ∆∆Gsol values predicted by QM-MST is 0.4 kcal/mol. Accordingly, the electro-

static charges directly derived from the fitting between the quantum and classical molecular

electrostatic produces a drastic increase in the quality of the results.

The systematic overestimation of the ∆Gsol values produced by SC(A2)-MST and
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SC(A3)-MST calculations is attributed to the use of an atom-centered charge model since

all the other simplifications typically used in the parametrization of electrostatic charges have

been omitted, especially in the latter approximation. An atom-centered model involves a

drastic simplification of the description of the molecular charge distribution, which can often

provide a sufficiently accurate representation of the molecular systems. Nevertheless, in this

case a more precise representation of the charge distribution is needed. Accordingly, more

sophisticated models, like the multicentric ones [6, 154, 155], should be employed to obtain

a better quantitative agreement between SC- and QM-MST results.

3.3.3 Analysis of the Reliability of the MST Method

Inspection of the literature reveals that experimental ∆Gsol values for 1 and 2 are not available.

The experimental measurement of this thermodynamic parameter is precluded in many cases

by the technical difficulties of obtaining equilibrium constants for large exothermic reactions

like the solvation of a solute. As a consequence, the ∆Gsol values for important bioorganic

systems, like for instance the nucleic acid bases and some amino acids, remain unknown,

making the theoretical methods powerful tools to provide new insights into the solution-phase

properties of such compounds. However, to make quantitative predictions, it is necessary to

be able to calculate ∆Gsol to high accuracy and this is the subject of this section. QM and

SC calculations have been performed to calibrate the reliability of ∆Gsol values provided by

MST for complex molecules such as calixarenes.

Table 3.4 compares the experimental and predicted ∆Gsol in chloroform and water for

a few small model compounds that are closely related to the investigated calixarenes. As

expected, the performance of the MST method is very consistent in both chloroform and

aqueous solutions.

In chloroform solution the largest error between the QM-MST and experimental ∆Gsol

values is 1.3 kcal/mol and the mean unsigned deviation is 0.6 kcal/mol, whereas in aqueous

solution these values are 2.0 and 0.8 kcal/mol, respectively. The rms deviation between QM-

MST and experimental values is 0.9 and 1.1 kcal/mol for solvation in chloroform and water,

respectively. Analysis of the ∆Gsol determined from SC-MST calculations provides similar

statistical parameters. Inspection of the mean signed deviation indicates that both the QM and

SC formalisms of the MST model tend to slightly overestimate slightly the ∆Gsol . Overall,
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Table 3.4: Free energies of solvation (∆Gsol, in kcal/mol) in chloroform (first line) and wa-

ter (second line) determined from QM-MST and SC-MST calculations on selected model

compounds and statistical comparison between the theoretical and experimental values.

compd exptl QM-MST SC-MST

water -2.0 -2.7 -3.6

-6.3 -6.1 -7.2

methanol -3.4 -3.0 -3.5

-5.1 -3.6 -4.1

dimethyl ether - -3.4 -3.6

-1.9 -2.0 -2.5

diethyl ether -4.3 -4.4 -4.4

-1.8 -2.5 -3.4

benzene -4.6 -5.9 -3.8

-0.9 -1.6 -1.8

phenol -7.1 -7.2 -8.0

-6.6 -4.6 -6.4

toluene -5.4 -6.5 -6.7

-0.9 -1.9 -1.6

ethylbenzene -5.8 -7.1 -7.3

-0.8 -2.0 -1.5

p-cresol -7.6 -7.7 -7.9

-6.1 -6.3 -6.8

rmsa - 0.9 1.1

1.1 0.9

mud (msd)b - 0.6(-0.5) 0.8(-0.6)

- 0.8(0.0) 0.8(-0.5)

arms: root mean square deviation. bmud: mean unsigned deviation. msd: mean signed deviation.
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cone saddle paco

Figure 3.4: Atomistic representation of the cone, saddle and paco conformations for 2. The

chloroform molecule trapped inside the cavity is also displayed.

there is excellent agreement between experimental and theoretical ∆Gsol in the two solvents

for the series of selected model compounds.

On the other hand, the omission of specific solute-solvent interactions could limit the

usefulness of continuum models for organic solutes with complex molecular structures. This

situation is specially important for 2, whose cavity is large enough to capture a chloroform

molecule [15, 142]. Thus, a very accurate description of the solute/solvent interface is re-

quired to account for the influence on ∆Gsol of the solvent molecule trapped in the cavity of

the solute. It should be emphasized that discrete models are able to represent this situation

satisfactorily [142].

The reliability of the MST model to study the solvation of organic solutes with complex

molecular structures has been demonstrated in recent studies involving calixpyrroles [21]

and rotaxanes [54]. However, we gave put the model further to test by comparing the ∆Gsol

predicted by all-continuum QM-MST calculations with that obtained through a discrete/QM-

MST model [2, 3, 5], in which the captured chloroform is explicitly represented. SC calcu-

lations were not performed to avoid the influence of the electrostatic parametrization on this

analysis. A set of 25 configurations was selected for each conformational state of 2 from

MD trajectories in chloroform solution, with a solvent molecule inside the molecular cavity

in all selected configurations [142]. This situation is illustrated in Figure 3.4, which shows a

representative configuration of the cone, saddle and paco.

The ∆Gsol for 2 with one explicit chloroform molecule (∆GE-CHL
sol ) was computed as the

sum of the gas-phase binding energy (∆Egp) between the solute and the explicit chloroform
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Table 3.5: Free energies of solvationa (in kcal/mol) in chloroform computed for the cone,

saddle and paco conformational states of 2 using discrete/continuum and all continuum cal-

culations.

cone saddle paco

∆GE-CHL
sol -36.4 -38.2 -37.2

∆GD/MST
sol -32.4 -34.9 -33.5

∆Gsol � 2 � -35.9 -37.1 -36.2

∆GD/MST
sol � ∆Gsol � 2 � 3.2 0 1.1 2.2 0 0.9 2.7 0 1.2

a∆GE-CHL
sol corresponds to the free energy of solvation of the complex 2 P CHCl3 estimated by using Eq. (3.10).

∆GD/MST
sol is the free energy of solvation of 2 obtained by using the formalism indicated in Eq. (3.11) for dis-

crete/continuum models. ∆Gsol Q 2 R is the free energy of solvation of 2 obtained by using all continuum calculations.

In all cases the QM-MST continuum method was used.

molecule, which for consistency was computed at the semiempirical AM1 level [44], and the

∆Gsol computed for the complex (2 S CHCl3) using the QM-MST method [2, 3, 5]:

∆GE-CHL
sol

� ∆Egp � ∆Gsol � 2 S CHCl3 � (3.10)

Ideally, ∆GE-CHL
sol should be identical with the sum of the ∆Gsol values computed for the

chloroform molecule and for 2 with use of the all-continuum model. Therefore, the ∆Gsol for

2 provided by the combined discrete/QM-MST model (∆GD/MST
sol ) can be determined as:

∆GD/MST
sol

� ∆GE-CHL
sol � ∆Gsol � CHCl3 � (3.11)

Obviously, the differences between ∆GD/MST
sol and the ∆Gsol obtained by using the same

conditions in the all-continuum model allow one to estimate the accuracy of the latter to de-

scribe the solvation of 2. Table 3.5 shows the values of ∆GE-CHL
sol and ∆GD/MST

sol for the three

conformational states of 2. Inspection of the ∆GE-CHL
sol estimations reveals that the chloroform

molecule trapped inside the cavity does not alter the solvation order of the three conforma-

tional states. Thus, the interaction between the 2 S CHCl3 complex and the bulk chloroform
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increases as follows: saddle T paco T cone. Furthermore, the ∆∆GE-CHL
sol (cone-saddle) and

∆∆GE-CHL
sol (cone-paco) values are -1.8 and -0.8 kcal/mol, respectively, which are very similar

to the values obtained without including any explicit solvent molecule.

A similar qualitative agreement is reflected by the values of ∆GD/MST
sol estimated for the

cone, saddle and paco conformations. However, the ∆GD/MST
sol values are underestimated

by about 3 kcal/mol with respect to the ∆Gsol obtained by using the all continuum model,

although relative values present a noticeable agreement. This systematic failure is probably

due to an overestimation of the ∆Gsol predicted by QM-MST for the chloroform molecule

(Eq. (3.11)). Thus, the excellent agreement found between ∆∆GD/MST
sol and ∆∆Gsol values

allow us to conclude that the MST continuum model provides a satisfactory description of

the molecular cavity, i.e. no explicit solvent molecule is required.

3.4 Conclusions

The results presented in this chapter allow us to conclude that the MST continuum model is

able to provide, at least qualitatively, a reliable description of the role of the solvent on the

conformational isomerism of complex solutes such as calixarenes. Support to this conclusion

comes from the comparison between the results obtained in the present work for different

frameworks of the MST model with those reported in previous studies where the discrete

solvation model was employed through classical MD simulations. It has been shown that

the effects of the solvent on the conformational preferences of calixarenes are satisfactorily

reproduced by using a combined approach in which the configurational space of the solute is

sampled through in vacuo MD simulations and the bulk solvent is represented with an implicit

continuum model. From a practical point of view, this appears to be an efficient approach that

requires less computer power than conventional MD simulations with their explicit descrip-

tion of solvent particles. The strategy was tested with two representative calixarenes, 1 and

2, and using two different solvents. It is very encouraging that the application of the QM-

MST method to the configurations generated in vacuo correctly reproduces the tendencies

previously predicted by MD simulations in solution.

The performance of the SC-MST method has been examined, Particular attention has

been paid to the parametrization of the atomic charges required to evaluate the electrostatic
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contribution to ∆Gsol . The results reveal that the SC-MST method is an inexpensive procedure

to investigate solvation effects when suitable atomic charges are used. Thus, the accuracy of

the results clearly depends on the quality of the electrostatic parameters. The results presented

here indicate that the method works well when standard molecular electrostatic potential-

derived charges are directly used, i.e. avoiding the approximations usually employed in the

MM calculations. Furthermore, better results should be obtained by improving the charge

representation, e.g. by using atomic dipoles or multicentric charges.

Finally, it should be mentioned that although the results presented in this study give confi-

dence in the suitability of inexpensive MST continuum model to account for solvation effects

on the conformational preferences of calixarenes, the method would present a potential lim-

itation. This is the lack of information about solvent molecules plays a relevant structural or

dynamical roles. In these cases MD with explicit solvent molecules is usually the most appro-

priate procedure [36, 39, 142]. However, in some cases these deficiencies can be alternatively

corrected by introducing discrete solvent molecules into the continuum calculation with little

increase in computer expense. In this way both macroscopic and microscopic solvation ef-

fects are taken into account. In summary, each strategy has its strengths and shortcomings,

and the judicious selection of the appropriate method to be used in the study of a particu-

lar problem is probably the most important decision for the study of a chemical process in

solution.
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4
Influence of a captured

solvent molecule

on the isomerization rates

of calixarenes

The conformational inversion rates of calix[4]arene and p-tert-butyl-calix[4]-

arene in vacuum and in chloroform have been calculated by using molecular

dynamics simulations, as a model study for a process with a pronounced solvent

effect. The reaction of a p-tert-butyl-calix[4]arene in chloroform is complicated

by the ability of one its conformations to capture a chloroform molecule in its

cavity, while the smaller cavity of the calix[4]arene is too small for an inclu-

sion. The relatively easily obtained free energies of conformational inversion in

a vacuum prove to be a great asset in the calculations with calix[4]arene in chlo-

roform. But they are of limited use for p-tert-butyl-calix[4]arene in chloroform,

where we had to resort to more advanced methods, to wit, window sampling and

a combined coupling parameter - umbrella sampling approach. Conformational

inversion rates calculated by the reactive flux method are in good agreement with

experimental data. 5
4.1 Introduction

Calix[4]arenes are macrocyclic molecules consisting of four phenol rings connected via me-

thylene bridges in the ortho positions with respect to the hydroxyl group, see Fig. 4.1. Ever

since their discovery in the 1940’s and 1950’s, they have continued to attract the attention of

supra molecular chemists [73]. Calixarenes are renowned for their usage as building blocksF The work described in this chapter previously appeared in J. Phys. Chem. B 107, 14476 (2003) [142].
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t-Bu

OH

b

a

c

Figure 4.1: The standard calix[4]arene has hydroxyl groups attached at the lower rim of the

benzene rings, and hydrogens at the upper rim. The p-tert-butyl-calix[4]arene has C � CH3
�
3

groups at the upper rim. The drawn vectors are instrumental in the definition of the reaction

coordinate. For clarity, we show the side groups for one phenol ring.

in large aggregates stabilized by hydrogen bonds. Zinke [160] and subsequent workers with

calixarenes have noted their propensity to form molecular complexes with smaller molecules,

a direct consequence of the presence of a cavity in the center of a calixarene [9, 67, 144]. The

properties that make calixarenes so popular, their small size and versatility, also make them

very suitable for computer modelling. By studying the isomerization process of solvated

calixarenes, we want to illustrate and validate the capabilities of current simulation methods.

Calix[4]arenes have four different conformations, distinguished by the rotation of the

phenol rings with respect to the central annulus, with the methylene groups acting as hinges.

In the “cone” conformation all phenol rings are oriented in the same direction. When one of

the phenol rings is rotated with respect to the other three phenol rings, the conformation is

called “paco” (short for partial cone). The conformations with two rotated phenol rings are

“1,2-alternate”(two neighboring phenol rings have rotated) and “1,3-alternate”(two opposite

phenol rings have rotated).

The isomerization reaction from cone to paco will be studied in this chapter by molecular

dynamics simulations (MD). The free energy barrier between these two conformations was

40



4. INFLUENCE OF SOLVENT ON THE ISOMERIZATION RATES OF CALIXARENES

0.0 4.0 8.0 12.0
0.0

1.0

2.0

3.0

r, A

g

Figure 4.2: Radial distribution functions of the carbon atom of chloroform relative to the

center of mass of the p-tert-butyl-calix[4]arene for the cone (solid line), paco (dashed line)

and transition state (dotted line) configuration.

determined by NMR experiments to be about 15-16 kcal/mol [10, 70]. This means that the

molecule stays in the cone conformation for most of the time, and crosses the transition

state corresponding to the top of the energy barrier only once every 10 to 100 ms. So, the

conformational inversion rate cannot be obtained from a normal MD run, which typically

covers only 10 to 100 ns. Previous calculations of rate constants and reaction equilibria

have therefore focused on locating the energy minima and transition states, and their normal

modes in a vacuum [53, 65, 75, 76, 125, 151]. Simulations with solvents have placed the

emphasis on the complexation with ions [1, 152, 66]. To bridge the aforementioned time gap,

in the reactive flux method the reaction rate is expressed as the product of two terms. First

the probability of a calix in the cone conformation to reach the top of the energy barrier is

calculated. Being an equilibrium property, statistical mechanics offers routes to calculate this

probability in the allotted time. Second, the chance that a molecule at the top proceeds to the

paco conformation is calculated. These downhill runs proceed very quickly, typically taking

only a couple of picoseconds.

For reactions with a clear-cut reaction barrier the above approach works satisfactorily, but

less obvious reaction paths require more advanced calculation methods, like “transition path

sampling” [22]. Although these techniques are well-established, their practical application is
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frequently less straightforward. Fig. 4.2 shows the radial distribution function of chloroform

solvent molecules around a p-tert-butyl-calix[4]arene, a calix with tert-butyl groups at the

upper rim. One clearly sees a sharp peak followed by a region of zero probability for the

cone conformation, indicating that one chloroform molecule is firmly captured in the cavity

of the p-tert-butyl-calix[4]arene. Inclusions of chloroform, and a range of other molecules,

in calix[4]arenes have also been observed by X-ray structure determination [24, 144], NMR

[15, 24] and quantum mechanical calculations [13, 25, 110]. It suggests that the solvent will

have a pronounced effect on the reaction, which complicates the calculations. In Sections

4.2 and 4.4 we describe and compare different approaches to this problem. In Section 4.5

we find a good agreement between our calculated rates and experimental values, and for

the simpler “bare” calix we recover rates previously calculated by a different technique. A

detailed analysis of the captured chloroform, and its influence on the reaction, is presented in

Section 4.6.

4.2 Theory

4.2.1 Reaction Rates

The calculation of the reaction rate requires the introduction of a parameter which separates

products and reactants. This parameter, or reaction coordinate, ξ , is usually chosen to be a

function of the coordinates of the reacting molecule only [11, 29, 74]. A reaction coordinate

is defined such that it is larger than ξ �� for products and smaller than ξ �� for reactants. So,

reactants and products are divided by the transition state plane ξ � ξ �� , which is located in

the thinly populated area near the top of the energy barrier.

According to Eyring’s transition state theory (TST), the forward rate constant is calcu-

lated as the instantaneous product-bound flux through the transition state, normalized by the

population of the reactant space [11, 29, 39, 51, 56, 74]:

kT ST
f

�  ξ̇ Θ � ξ̇ � δ � ξ � ξ �� � � Θ � ξ �� � ξ � � � U3 ξ̇ 3 � ξ VW
2

P � ξ �� �
ξ VWX� ∞

P � ξ � dξ
. (4.1)

Here ξ̇ � dξ � dt, δ and Θ are the Dirac delta function and Heaviside step function, respec-

tively, and the broken brackets denote a canonical average, with the subscript ξ �� indicting
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a restriction to the transition state. The probability distribution on the right-hand side repre-

sents an integral of the Boltzmann factor over all configurations with the same value of the

reaction coordinate [39, 56]:

P � ξ 5 ��� 1
Q

h � 3N
�D�

δ � ξ � X � � ξ 5 � exp �(� βH � X � pX
��� dXdpX , (4.2)

where H is the Hamiltonian, X is the collection of all 3N coordinates, pX are conjugate

momenta, h is Planck’s constant, and β � 1 � kBT . The partition function Q arises as the

normalization factor of the distribution.

Transition state theory gives an over-estimated value as compared with the true reaction

rate, because TST does not take into account the possibility of rapid re-crossings [11, 29, 39,

51, 56, 74]. For example, a molecule can cross the transition state, collide with a solvent

particle, and bounce back to its original configuration. Such a trajectory will contribute to the

TST rate (it once crosses the transition state with a positive velocity), but it does not contribute

to the true reaction rate. Likewise, re-crossings will also be occurring if the chosen transition

state happened to lie below the top of the energy barrier. As a compensation, the reactive

flux method (RF) introduces a transmission coefficient κ , whose value lies between zero and

one [29, 74]:

kRF
f

� κ kT ST
f . (4.3)

Under the conditions that classical mechanics adequately describes the motion of the mole-

cule, the transmission coefficient can be calculated exactly. From Onsager’s regression hy-

pothesis it follows [29, 74], that re-crossings within a time t following the initial crossing

reduce the reaction rate by a factor

κ � t ���ZY δ � ξ � 0 � � ξ �� � ξ̇ � 0 � θ � ξ � t � � ξ �� ��[Y δ � ξ � 0 � � ξ �� � ξ̇ � 0 � θ � ξ̇ � 0 ��� [ . (4.4)

If the energy barrier is high, and the energy transfer to the solvent is efficient, then only

molecules that are still near the transition state are capable of re-crossing. Once the molecule

has reached the reactant or product state, and its excess energy has been dissipated by the

solvent, it will only re-cross on a time scale associated with the reaction rate itself. This

suggests that κ � t � shows a rapid transient decay from a value of 1 to a plateau value, which

in turn is decaying very slowly. It is this plateau value which enters in eq. 4.3.
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Substituting eq. 4.1 into eq. 4.3, and converting probability distributions into free energies

using

A � ξ ��� � kBT lnP � ξ � � constant, (4.5)

we rewrite the expression for the RF rate as

kRF
f

� κ \ kBT
2π ]_^ ∑

i

1
mi ` ∂ξ

∂xi a 2 b
ξ VW exp cd� A � ξ �� � � AR

kBT e . (4.6)

Here AR is the free energy of the integrated probability of the reactant well, and the average

velocity of the reaction coordinate has been re-cast in an easily evaluated form [36, 39]. In

the experimental literature a slightly different definition of the free energy is commonly used,

by writing a measured reaction rate as

kexp
f

� kBT
h

exp cd� ∆A ��
kBT e . (4.7)

4.2.2 Umbrella sampling

As mentioned in the section 4.1, the high free energy barrier means that the molecule stays

in one conformation for a long time. The barrier region will be sampled very poorly in a

simulation, and it is quite likely that it is not sampled at all. To eliminate the difficulties

with the sampling, we add to the existing potential energy an “umbrella” potential U � X � ,
which reduces the free energy differences between reactants, products and transition state.

The probability distribution of the system with the umbrella potential reads

PU � ξ ��� 1
QU

h � 3N
�D�

δ � ξ � X � � ξ 5 � exp �9� β
+
H � X � pX

� � U � X � - 	 dXdpX . (4.8)

In case the umbrella potential is a function of the reaction coordinate only, the distribution in

the biased run is easily converted into the probability distribution of the unbiased run,

P � ξ ��� cPU � ξ � exp � βU � ξ ��� , (4.9)

where c is a proportionality constant. The particular choice U � ξ ��� � A � ξ � would make PU a

constant, independent of ξ . In the biased run then, the barrier between products and reactants

has effectively vanished, and both regions can be sampled sufficiently with a single run. But,
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at the start of our simulations we do not know what the free energy function looks like, so we

can only make educated guesses for the umbrella. If a long simulation with a trial umbrella

samples the entire range of the reaction coordinate but the distribution is not reasonably flat,

then the sampled probability distribution may be converted into a potential according to eq.

4.5 and added to the existing umbrella to define a new trial umbrella for a second simulation

and so on. A useful first guess for an umbrella is the minimum energy as a function of the

reaction coordinate.

It all becomes a bit more complicated if the initial guess fails to sample the entire relevant

range of the reaction coordinate. In this work we used two extensions of umbrella sampling

to circumvent this deficiency. In “windows” sampling [85] the single umbrella for the entire

range is replaced by a series of L umbrellas Ul � ξ � , l � 1 � )f)() � L, each covering a small range

of the reaction coordinate. The calculated distributions Pl � ξ � are then combined into a single

distribution by using the proportionality constants c to match the partial distributions at the

overlap of successive windows. In the second method we combine umbrella sampling with

the coupling parameter approach. The later is frequently used for thermodynamic integration

of the free energy difference between similar molecules [99, 100, 117, 157]. A coupling pa-

rameter λ transforms the force field representative of molecule A (λ � 0) into the force field

representative of molecule B (λ � 1) via a series of intermediate, non-physical molecules:

Φ � X � λ �:� � 1 � λ � ΦA � X � � λ ΦB � X � . (4.10)

In the current case, the coupling parameter was used to turn on the interaction between the

isomerizing solute and the solvent. We used a series of runs from λ � 1 (no interaction) to

λ � 0 (full interaction) with λi g 1
� λi � ∆λ , and a different umbrella potential Uλ � ξ � for

each λi. The probability distribution in this case is just

Pλ � ξ ��� 1
QU G λ �

δ � ξ � X � � ξ �� � exp � � β
+
Φ � X � λ � � Uλ � ξ � - 	 dX. (4.11)

Like standard umbrella sampling, this will only work efficiently if we have a reasonably flat

distribution for each λi. This is achieved by using the umbrella that flattened the distribution

at λi as the first trial umbrella potential for λi g 1, provided the steps ∆λ are sufficiently small.
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4.3 Model and Simulation details

As a reaction coordinate we use the intuitively appealing angle between the rotating phenol

ring and the central annulus. For this purpose, the carbon atoms of the phenol ring are num-

bered 1 through 6, starting at the carbon connected to the hydroxyl group, and the carbons of

the methyl group connecting rings are labelled a through d, with a and b at either side of the

rotating ring. The orientation of the phenol ring is then described by the vectors a � x4 � x1

and b � � x5 � x2
� Ah� x6 � x3

� . For the central annulus the vector c � � xa � xc
� Ah� xb � xd

�
is used. The main value of the reaction coordinate is given by the angle ϕa between a and

c. As this angle proves unreliable for configurations where a and c are roughly parallel, and

to extend the range beyond 0 � 180 i , we introduce a second angle, ϕb between b and c. By

simple arithmetic manipulations the value of ϕb is made to correspond with ϕa, and a smooth

switching function is introduced to combine the two into a single differentiable reaction co-

ordinate.

Both calixarenes were modelled using the CHARMM parameter set, version 22. This

force field has been used before for reaction rate calculations and molecular modeling of cal-

ixarenes [36, 37, 39, 53, 125]. Of course, the results depend on the force field used. The

complete force field can be found in ref [53]. All bond lengths involving a hydrogen atom

were constrained using the SHAKE algorithm, to accelerate the calculations with a negligible

loss of accuracy [37]. For the simulations in a vacuum the range of the nonbonded interactions

was set at infinity. In chloroform the intermolecular interactions were truncated at 1.3 nm,

using a charge group list, while the nonbonded intra-calix interactions were not truncated at

all. The chloroform was modeled as rigid bodies by using the potential of ref [45]. The trun-

cated octahedral periodic simulation box contained 317 chloroform molecules surrounding

the calix (box size j 4.4 nm) and 386 molecules around the p-tert-butyl-calix[4]arene ( j 4.8

nm), which is sufficiently large to prevent any solvent molecule from interacting with a solute

and one of its periodic images simultaneously. The temperature and pressure were stabilized

at 300K and 1bar, by a Nosé-Hoover baro-thermostat, using time constants of 0.1 and 0.5 ps,

respectively. All simulations were done with a modified version of DL POLY 2.0 [131].
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4.4 Free energy

As a first estimate for the umbrella we used the minimum energy as a function of the reac-

tion coordinate for the molecule in a vacuum. The minima were calculated by cooling the

molecule down to 10 K, with a Gaussian temperature constraint, keeping the reaction coordi-

nate constrained during every run. In the subsequent umbrella runs in a vacuum the region of

motion of the reaction coordinate was restricted from � 20 i to 200 i , to reduce the chances of

“spontaneous” conformational transitions due to the high stress in the molecule beyond these

extremes. These outermost conformations have much higher energies than the cone and paco

minima (at approximately 31 i and 168 i respectively), thus only highly improbable confor-

mations are excluded. This limitation was done by adding two Fermi � Dirac-like functions

to the umbrella, chosen such that they were virtually zero in the interesting region and rapidly

increased at the borders. The umbrella potential lowered not only the cone to paco transition

state but also the paco to 1,2-alternate and paco to 1,3-alternate transition states. (In the 1,2-

alternate conformation, either one of the phenol rings neighboring the rotated phenol of the

paco is also rotated. In the 1,3-alternate conformation the opposite phenol ring is rotated.)

Once a molecule reaches these alternate conformations in a simulation, it does not easily re-

turn to the cone or paco conformation. To avoid these problems, the umbrella potential was

modified to

U � X ��� f � ξ � � f2 � ξ2
� � f3 � ξ3

� � f4 � ξ4
� , (4.12)

where f � ξ � is the initial umbrella potential, and the three fi � ξi
� � i � 2 � 4 � are Fermi � Dirac-

like potentials depending on the angle between the annular plane and the phenol ring of the

respective alternate reaction. Equations 4.8 and 4.9 were rewritten accordingly.

The probability distributions in a vacuum obtained with the minimum energy as umbrella

were far from flat. For the p-tert-butyl-calix[4]arene we even had to use three windows to

sample the whole range of ξ . The overall distributions were transformed into extra umbrella

potentials according to eq. 4.5, and the systems were run again. This procedure was iter-

ated both for the calix and the p-tert-butyl-calix[4]arene. The final simulations, with just

one window covering all values of ξ , were continued for 18 and 19 ns for calix and p-tert-

butyl-calix[4]arene respectively and gave flat distributions. The resulting free energy differ-

ences between transition state and cone well were 13.3 kcal/mol for a calix[4]arene and 13.9
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Figure 4.3: Free energy of a calix[4]arene in a vacuum (solid) and in chloroform (dashed).

kcal/mol for a p-tert-butyl-calix[4]arene, see Figs. 4.3 and 4.4.

The natural choice for the umbrella potential for the simulation of a calix[4]arene in

chloroform was the umbrella potential that gave a flat distribution in a vacuum. The run with

this umbrella lasted 16 ns. The distribution was transformed into a potential by eq. 4.5, and

added to the existing umbrella. With this new umbrella the distribution was satisfactorily flat

over 11 ns. The free energy difference between the transition state and the cone well was

calculated to be 14.2 kcal/mol, see Fig. 4.3. The increase of this difference showed the same

tendency as in previous works [36, 39]. We postpone the discussion of the conformational

inversion rates until Section 4.5.

The first simulation of a p-tert-butyl-calix[4]arene in chloroform was also made with the

final vacuum umbrella. This simulation was disastrous: it failed to satisfactorily sample the

entire range of the reaction coordinate. The simple reason was that one of the chloroform

molecules was caught in the cavity. As mentioned above, we resorted to two different meth-

ods to obtain the probability distribution of a p-tert-butyl-calix[4]arene in chloroform. In the

window sampling approach the vacuum umbrella was used again as a first estimate, supple-

mented with ten different windowing potentials, which restricted the motion of ξ roughly to

the range from 20 i l � 40 i to 20 i l, with l the number of the window. Because of the nar-

rowness of the windows, the reaction coordinate sampled the whole width, be it with large
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Figure 4.4: Free energy of a p-tert-butyl-calix[4]arene in a vacuum (solid) and in chloro-

form, obtained with windows umbrella sampling (dashed) and combined coupling parameter

- umbrella sampling (dot-dashed).

variations within several of the Pl � ξ � . The large overlaps between neighboring windows were

exploited to combine the ten individual distributions into a single overall distribution, which

was then transformed into a new umbrella potential for the entire range of ξ . The ensuing

distribution was not completely flat, and one more iteration step was taken. The final flat dis-

tribution was received by averaging over three runs with different start configurations, each

run lasting 9.5 ns. The free energy difference between the transition plane and the cone state

is 13.9 kcal/mol, see Fig. 4.4. This value was reproduced by the three individual runs to

within 0.1 kcal/mol. We want to draw attention to the shift of the cone, transition and paco

states with respect to their positions in a vacuum.

The second approach was to little by little turn on the interactions between the p-tert-

butyl-calix[4]arene and the chloroform, whilst adjusting the umbrella potential at the same

time to keep the distribution as flat as possible. We started from the situation λ � 1, denoting

a complete lack of interactions between the p-tert-butyl-calix[4]arene and the solvent (but

with full-blown interactions within the p-tert-butyl-calix[4]arene and within the chloroform).

In this case the vacuum umbrella gave a flat distribution, of course. The value of λ was then

decreased with steps of ∆λ � 0 ) 1. To accommodate the calix, a cavity had to be formed in the
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Figure 4.5: Transmission coefficients of a calix[4]arene in a vacuum (solid) and in chloroform

(dashed).

chloroform, which was facilitated by the volume rescaling routine used to keep the system

at a constant pressure. We used two different systems for the simulations from λ � 0 ) 9 to

λ � 0 ) 3. When the distributions of both systems were found to agree with one another and

did not change any more, the average distribution was transformed into the extra umbrella

potential to be used for the next λ . The average time for each simulation was 7.5 ns. The

simulations from λ � 0 ) 2 to 0 ) 0 followed the same procedure, with a third system added

to increase the precision of the calculations, which were becoming slower because of the

increased solvent interactions. The final flat distribution for λ � 0 was received from three

runs with a duration of 9.5 ns each. The free energy difference between the transition plane

and the cone state is 14.2 kcal/mol see Fig. 4.4. This value compares well with the 13.9

kcal/mol obtained by window umbrella sampling.

4.5 Conformational inversion rate

In the previous section the free energies of our systems were produced as functions of the

reaction coordinate, A � ξ � . After the substitution of A � ξ � in eq. 4.5, the reaction rate kT ST
f is

easily calculated by eq. 4.1. The results are collected in Table 4.1 and Table 4.2. Here the
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Figure 4.6: Transmission coefficients of a p-tert-butyl-calix[4]arene in a vacuum (solid) and

in chloroform (dashed).

transition state , i.e. ξ �� , was defined as the value of ξ for which A � ξ � reached a maximum.

From a physical point of view, a value 10 i to the left or to the right would have been equally

justified, though it would have produced a different (higher) reaction rate, as explained before.

To obtain the true reaction rate, we next calculated the transmission coefficient, see eq. 4.4.

The first step was to create configurations belonging to the transition plane, which was done

by constraining the reaction coordinate to ξ �� during a simulation. The atomic coordinates

were saved every picosecond. Next, 1000 relaxation runs were performed for each molecule

to get the transmission function. These were started with the saved coordinates, combined

with random velocities drawn from a velocity-weighted Maxwell � Boltzmann distribution

[37]. The transmission coefficients reached their plateau values after about 1 ps, as depicted

in Fig. 4.5 and Fig. 4.6.

The results for the calix[4]arene are shown in Table 4.1, those for the p-tert-butyl-calix[4]-

arene in Table 4.2. In Table 4.1 we also included the simulation results from ref. [39], which

were realized under the same conditions and with the identical force field, but with a different

reaction coordinate. This difference led to a different free energy function and therefore to the

difference between the transition state theory rates. It is noteworthy that, after multiplication

by their respective transmission coefficients, the reaction rates kRF are virtually identical.
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Table 4.1: Computed and experimental rates of calix[4]arene in vacuum and in chloro-

form.

Solvent kT ST � s � 1 κ kRF � s � 1 kexp � s � 1

Vacuuma 481 0.42 202

Vacuumb 241 0.92 222

Chloroforma 110 0.20 22 8c, 30d

Chloroformb 84 0.43 36 8c, 30d

aThis work. bCalculations by den Otter and Briels [39]. cExperimental results by Araki et al. [10].
dExperimental results by Gutsche and Bauer [70].

The conformational inversion rates are also in good agreement with the values obtained

from experimental data. Gutsche and Bauer [70] measured a coalescence temperature with

temperature-dependent 1H NMR for the hydrogens connected to the hinge carbons, and de-

rived the isomerization rate at this temperature from the chemical shift. They converted the

rate into a free energy by

∆A �� � RTcoalescence ln . 6 ) 62 A 1012

kcoalescence / . (4.13)

Araki et al. [10] measured the reaction rate as a function of temperature and obtained the

free energy from an Arrhenius plot. Assuming that the free energy is independent of the

temperature, we calculated the reaction rates at 300 K from the data provided in ref. [70] and

ref. [10] by eq. 4.7. These rates correspond to the cone to inverted cone reaction (all four

rings have rotated), because the intermediate conformations have too short a life-time to be

detectable, and are therefore not directly comparable to our rates.

The inversion reaction consists of four steps, with one phenol ring rotating in each step

[53]. These steps are independent, as the energy barriers between consecutive minima are

much higher than kBT . In schematic form,

C
k1�
k2

P
k3�
k4

A
k4�
k3

P k k2�
k1

C k , (4.14)
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Table 4.2: Computed and experimental rates of p-tert-butyl-calix[4]arene in vacuum and

in chloroform.

Solvent kT ST � s � 1 κ kRF � s � 1 kexp � s � 1

Vacuuma 151 0.26 39

Chloroform, windows samplinga 234 0.09 20 3.6b,12c

Chloroform, λ samplinga 151 0.09 13 3.6b, 12c

.
aThis work. bExperimental results by Araki et al. [10]. cExperimental results by Gutsche and Bauer [70]

where C, P and A denote the sum of all cone, paco and alternate conformations respectively,

and where primes indicate conformations in which the majority of the phenol rings are point-

ing downward. Our calculations concern the rotation of one of the phenol rings of a cone. As

there are four phenol rings, the overall cone-to-paco rate is four times higher, k1
� 4kRFf . The

calculated free energy functions can also be used to determine the reverse reaction rates, from

paco to cone, which have the exact same transmission coefficients as the forward reactions.

In this case the ordinal number of the rotating phenol is fixed by the particular paco confor-

mation one is looking at, hence k2
� kRFr

� 0 ) 97 S 108s � 1 for p-tert-butyl-calix[4]arene. Any

paco can proceed to an alternate conformation through three different routes, by rotating the

phenol ring to the left, to the right, or opposite to the rotated phenol ring of the paco. The

latter reaction requires breaking up two hydrogen bonds, and the former two reactions require

breaking up only one hydrogen bond and are therefore much quicker, k3
� k k3 � k k k3 . Because

of the directionality of the hydrogen bonds, the rates of the two paco to 1,2-alternate reactions

are different. Applying transition state theory to the free energy profile in a vacuum, we find

k k3 � 0 ) 35 S 108s � 1 and k k k3 � 0 ) 69 S 108s � 1. Next, the set of coupled differential equations rep-

resented by eq. 4.14 is analytically solved to give five relaxation times, the largest of which

corresponds to the inversion process. Inserting the above numerical values (k4 is irrelevant),

the final expression for the p-tert-butyl-calix[4]arene reads

kexp
inv j 2kRF

f . (4.15)
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An identical analysis of the calix, with k2 though k3 determined using the methods outlined

above, yields [36, 39]

kexp
inv j 3kRF

f . (4.16)

By inverting these equations, we arrive at the experimental rates listed in Table 4.1 and Ta-

ble 4.2. They agree very well with our simulation results.

4.6 Structural analysis

The above numerical results show a mixed picture. On the one hand, the free energy curve

of the calix is nearly identical in a vacuum and in solvent. The small differences and the

reduced transmission coefficient do, however, reduce the conformational inversion rate in

solvent by nearly an order of magnitude. On the other hand, the free energy profile of the

p-tert-calix[4]arene has drastically changed in the solvent, but the final conformational inver-

sion rate has gone down only by a factor of two to three. It is difficult to determine in which

way exactly the interactions between the solute and the solvent, and the induced changes in

the entropies and internal energies of the solute and the solvent, affect the reaction.

The interplay between solute and solvent can perhaps be better understood by studying

the distribution of the solvent in the first solvation shell around the solute. In Fig. 4.7 scatter

plots are given of the positions of the carbon atoms of the chloroform molecules in the vicin-

ity of the p-tert-butyl-calix[4]arene. These plots were collected from simulations of about 1

ns each. The simulation of the cone was run with the normal force field, the paco required an

extra potential to prevent the rare spontaneous transition to a cone, while the transition state

could only be sampled by constraining the reaction coordinate. In the analysis, the transla-

tional and rotational displacements of the p-tert-butyl-calix[4]arene were calculated and the

whole box was subjected to the same correction to keep the p-tert-butyl-calix[4]arene at a

constant position and orientation, before the relative positions of the chloroforms were deter-

mined [37, 39]. Comparable plots for the calix[4]arene can be found in ref. [39]. Although

a different reaction coordinate was used in those calculations, there are no discernible differ-

ence for the distributions around the transition state of the calix[4]arene. As the simulations

of cone and paco do not depend on the reaction coordinate at all, they obviously are identical.
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Figure 4.7: Density distributions of the carbon atoms of chloroform, after correcting for the

orientation of the p-tert-butyl-calix[4]arene. From left to right are shown the cone, transition

state, and paco conformation. The middle row gives a side view, the upper row a top view of

the carbons with a positive z-coordinate, and the bottom row a top view of the carbons with a

negative z-coordinate. The configurations shown are averaged over the simulation.
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Figure 4.8: Probability distributions of the angles describing the orientation of the nearest

chloroform molecule for the cone (left) and paco (right) conformations. Note that for a per-

fectly random distribution P � θ � O sin � θ � and P � φ �:� constant.

The two top plots in the left column of Fig. 4.7 clearly show that the textitp-tert-butyl-

calix[4]arene in the cone configuration captures a chloroform inside its cavity. The radial

distribution function of the chloroform around the cone, see Fig. 4.2, reveals a wide gap

around 4.5 Å, suggesting that the captured chloroform molecule hardly ever escapes. This is

also corroborated by the fact that in all simulations of a cone, one and the same chloroform

was observed to reside within the cavity throughout the entire simulation. In the calix, on

the other hand, there is a tendency for a chloroform to hover just above the calix, but this

chloroform is exchanged regularly (about once every 0.5 ns) for another chloroform. Below

both calixarenes, the polar hydroxyl groups are not capable of orienting the polar chloroform.

The plots in the middle column and those in the right column show that the transition state
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Figure 4.9: Density distributions of the chlorine atoms of the captured chloroformmolecule,

in cone (left) and paco (right) conformations. The upper row gives a top view, and the bottom

row a side view. The configurations shown are averaged over the simulation.

and the paco also induce quite some structure in the solvent, but they are not capable of

immobilizing a chloroform.

The orientation of the chloroform molecule inside the cavity of the p-tert-butyl-calix[4]-

arene can be described with two angles. The angle θ is defined as the angle between the vector

d, pointing from a chloroform hydrogen to its carbon, and the normal vector c introduced

earlier. Fig. 4.8 shows that the vector d is pointing downward with two preferred angles of

approximately 25 i and 75 i for the cone conformation. The first maximum corresponds to

an orientation with the hydrogen of the chloroform pointing towards the annulus, and the

second maximum corresponds to an orientation with one of the chlorines pointing down. In

X-ray diffraction experiments on the solid state of a complex of p-tert-butyl-calix[4]arene and

chloroform, a value of 68 i was found for θ at room temperature [15]. This corresponds well
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Figure 4.10: The equilibrium angles of the phenol rings to the right (dot-dashed), to the left

(dashed) and opposite (long dashed) to the rotating phenol ring as functions of the reaction

coordinate. The straight line denotes the rotating ring itself.

with our second peak, though it should be noted that the orientation in the solid state need not

be identical with that in the liquid state. In further agreement with their findings, the top left

plot in Fig. 4.7 shows that the carbon of the chloroform does not lie above the center of the

calix. The second angle is obtained by projection d onto the annular plane of the calix, and

calculating the angle ,φ between this projection and the coplanar vector xb � xc � xa � xd.

Thus, an angle of 90 i indicates that the hydrogen of the chloroform is directed toward the

rotating phenol ring, 180 i corresponds with the hydrogen directed at the neighboring phenol,

to the left (at the top view), and so on. The captured molecule rotates freely inside the cavity

of the cone conformer, as can be seen from the distribution of φ in Fig. 4.8.

Four-fold symmetry relating to the symmetry of the calix is visible, with maximum be-

tween the phenol rings. The density distribution of the chlorines of the captured chloroform

reveals a similar symmetry, see Fig. 4.9, again with a preference for the positions directly

above the hinge carbons. In the paco conformation the rotations of the chloroform are sig-

nificantly reduced. Its hydrogen is predominantly directed at 25 i with respect to the annulus.

The in-plane distribution has only three peaks: one on either side of the ring to the left of

the rotating ring and one directly at the ring to the right. Fig. 4.9 reveals that there are only

three regions of high chlorine density left, all of which lie at the same side of the p-tert-butyl-

calix[4]arene.
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Figure 4.11: The cone (left) and paco (right) conformations with their hydrogen bonds at the

lower rim.

As mentioned before, we introduced an angle for each of the three phenol rings besides

the rotating phenol ring. The average values of these four angles are given in Fig. 4.10 as

functions of the reaction coordinate. The rotations of the nonreacting phenol rings were

limited to a maximum of 85 i to avoid reactions to alternate conformations, a value seen here

to lie far beyond the typical value of these angles. All lines intersect at 33 i , which corresponds

to the stable cone conformation. This conformation is symmetric because the four hydroxyl

groups at the lower rim form a cyclic array of four hydrogen bonds, see Fig. 4.11. When the

phenol ring rotates between 0 i and 75 i , the angles of its two neighboring rings are identical.

But as this ring rotates further, two hydrogen bonds are broken, see Fig. 4.10, and an

asymmetric paco conformation is reached with the two neighbors (one a donor, one an ac-

ceptor) at different angles, see Fig. 4.11. In a vacuum the disparity between the two rings is

already present, with equilibrium values of about 15 i and 22 i , respectively. The asymmetri-

cal position of the chloroform enlarges this difference.

Auto- and cross-correlation function of the angles are depicted in Fig. 4.12 for the cone

and paco conformations. The standard force field was used, supplemented in the case of the

paco with a potential to prevent its transition to the cone conformation. Each run lasted 2 ns,

with angles stored every 2 fs. For the cone there are only three distinct correlation functions,

as expected from its symmetry. In agreement with Fig. 4.10, the transient correlation between

any ring and its two neighboring rings is negative and bigger than that with its opposite ring.

The correlations for the paco are all different, due to the lack of symmetry. The fluctuations

of the angles are about 40% bigger in this case, as expected with the reduced number of hy-
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Figure 4.12: Correlation functions of the angles of phenol rings i and j, with αi
� ξi �  ξi � .

The upper row gives the correlation functions for the cone conformation, the lower row for

the paco.
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drogen bonds. Surprisingly, the auto-correlations of rings 3 and 4 and their cross-correlation

are slower than for the cone. From the small amplitudes of all cross-correlations, and the

limited shift of the equilibria observed in Fig. 4.10, we conclude that the coupling between

two rings is so weak that the isomerization steps in eq. 4.14 are independent.

Further insight into the reaction process is obtained from the average energies of the

conformations. In a vacuum, the energy difference between cone and paco is ∆E vac � Evac
paco �&�  Evac

cone � � 9 ) 2 kcal/mol. This difference is mainly due to Coulombic interactions,

which account for 7.8 kcal/mol, and bending terms, 1.4 kcal/mol, with the remaining terms

adding less than 0.7 kcal/mol each. The free energy difference between the two conforma-

tions is ∆Avac � 7 ) 4 kcal/mol, implying that the entropy of the paco is higher by ∆Svac � 6

cal/(mol K). In chloroform the difference in the total energies has risen to ∆E sol � 11 ) 9
kcal/mol, hence ∆∆E � 2 ) 7 kcal/mol. This rise is mainly due to an increase of the van

der Waals interactions (including interactions with and within solvent) by ∆∆E vdw � 3 ) 5
kcal/mol, while the Coulombic and bending terms dropped by 1.0 kcal/mol each. We think

that these differences, which stabilize the cone with respect to the paco, arise mainly from the

strong binding with the captured chloroform molecule. The solvent increased the free energy

difference to ∆Asol � 9 ) 0 kcal/mol (∆∆A � 1 ) 6 kcal/mol). The entropy difference is therefore

even larger in chloroform, ∆Ssol � 9 ) 7 kcal/mol (∆∆S � 2 ) 7 cal/(mol K)), which we speculate

is largely caused by the immobilization of one chloroform inside the cavity of the p-tert-

butyl-calix[4]arene. The comparison of these results with quantum mechanical calculations,

using a continuum model to represent the solvent [4] was given in Chapter 3.

4.7 Conclusions

The isomerization rates of calix[4]arene and p-tert-butyl-calix[4]arene in a vacuum and in

chloroform have been studied with molecular dynamics simulations. Whereas the free en-

ergy as a function of the angle of the rotating phenol was relatively easily calculated for the

former molecule, it proved much harder for the latter as it held on with tenacity to a chlo-

roform molecule. Two methods were tried in the latter case: windows umbrella sampling

and a combined coupling parameter � umbrella approach. Both methods coped well with

the captured chloroform, their final free energy distributions being very similar, though the
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combined coupling parameter � umbrella approach required much more time than windows

umbrella sampling. The reactive flux method was used to obtain the rate constants. All rates

are in good agreement with the experimental data. The conformational inversion rate of the

calix[4]arene is close to the value previously calculated with a different reaction coordinate,

illustrating the robustness of the reactive flux method.
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5
Nucleation free energy

of pore formation

in an amphiphilic bilayer

studied by molecular dynamics

simulations

The formation of a pore in a membrane requires a considerable rearrangement of

the amphiphilic molecules about to form the bilayer edge surrounding the pore,

and hence is accompanied by a steep increase of the free energy. Recent rupture

and conductance experiments suggest that this reshuffling process is also respon-

sible for a small energy barrier that stabilises ‘pre-pores’ with diameters of less

than one nanometer, rendering both the opening and closing of pores an activated

process. We use the potential of mean constraint force (PMCF) method to study

this free energy profile, as a function of pore radius, in a coarse grained bilayer

model. The calculations shows that the free energy rises by 15 to 20 kT during

pore opening, making it an extremely rare nucleation event. Although we do

not observe a barrier to pore closure, the results do make the existence of such a

barrier plausible. For larger pores we find a smooth transition to Litster’s model,

from which a line tension coefficient of about 3.7 A 10 � 11 Jm � 1 is deduced. 5
5.1 Introduction

Understanding biological processes in living cells is inextricably linked with the research of

physical and mechanical properties of membranes isolating the cell from its environment and

separating compartments within the cell. One of the most essential processes is the formation

of pores in the presence of mechanical stresses. Subsequent leakage of the cell’s contents andF The work described in this chapter has been accpeted to J. Chem. Phys. [140].
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Figure 5.1: Sketch of free energy versus pore radius for a stretched membrane. The main

peak is the traditional barrier to rupture, following Litster’s mesoscopic model. Our focus is

on the low R region, where a pore is being formed in a bilayer. Recent experiments propose

a peak, which stabilises a pre-pore state, in this region. The insert shows the results of our

calculations.

penetration of infectious agents through the pore can easily cause death to the cell, whereas

their pivotal role in the fusion of cells, the possibility to insert medicinal molecules or to

transport genes or ions across the membrane, give a positive meaning to pores in membranes.

Thus, the study of pore formation in amphiphilic or lipid bilayers has attracted researchers

for over thirty years.

The first theoretical expression for the free energy difference between an intact bilayer

and an equally sized bilayer containing a pore was proposed by Litster in 1975 [90]. Litster

assumed that this difference consists of an edge free energy 2πRkC residing in the circumfer-

ence of a circular pore of radius R, in combination with a reduction of the elastic surface en-

ergy by πR2γ , where γ is the surface tension. This mesoscopic model predicts a maximum in

the free energy of πk2
C � γ at R � kC � γ , see Fig. 5.1. Pores with a smaller radius will eventually

reseal, while larger pores grow indefinitely (rupture). Membranes are usually punctured by

applying transmembrane electrical potential differences of a few hundreds of millivolts. By

observing the dynamics of resealing of pores in phospholipid membranes, typical values of

about (0.5 - 5) A 10 � 11 N have been found for the line tension coefficient kC [19, 23, 48, 159].

These values have been neatly reproduced by means of molecular dynamics simulations of an
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atomistic model of DPPC membranes [88] as well as by a generic coarse grain model [141]

suggested first by Goetz and Lipowsky [61, 62]. Similar values have been used as input in a

mean field study of pore formation in diblock copolymer membranes [138] and in a network

simulation of pore formation and rupture [124]. The latter process has been studied by us in

Chapter 6, where we describe the dependence of the phase diagram of a punctured membrane

on the size of the (zero tension) membrane. The model by Litster is sufficiently general to

provide the basic language for a variety of pore-related membrane problems. For example,

the stability of peptide induced pores in lipid membranes has been described [80, 89] by

discussing the influence of the peptides on the line tension.

In Chapter 6 we have described the presence of a barrier between the stable and metastable

states of a stretched periodic flat membrane and its gross implications for puncturing and rup-

turing membranes. In that chapter, like in Litster’s model, it was tacitly assumed that creating

a pore in a membrane does not require any other work than the ones described by the elastic

and the edge free energies, which actually only describes the thermodynamics of an already

existing pore. It is obvious, however, that creating a pore requires different rearrangements of

the amphiphiles than enlarging the circumference of an existing pore. In principle, therefore,

Litster’s model should be extended by adding a term proportional to the number of pores in

the membrane. In cases where just one pore of mesoscopic size opens up, like in Chapter

6, this would have no consequences whatsoever on the thermodynamic description. Pore nu-

cleation in itself, however, is a very important process for the functioning and treatment of

living cells. Therefore, we have set out to study this process in greater detail.

The amphiphiles in an intact bilayer are all oriented more or less parallel to each other

and perpendicular to the plane defined by the layer. Characteristic of a bilayer edge are tilted

amphiphiles, whose heads form (in cross-section) a semi-circular surface with a radius com-

parable to the length of the molecule and whose tails point to the centre of this semi-circle,

i. e. they are directed diagonally or even parallel to the membrane [90]. The rearrangements

needed to go from one state to the other result in a free energy difference between the intact

and the punctured membrane. If the reaction path proceeds along very unfavourable config-

urations, this could even lead to a free energy barrier between the two states, as depicted in

Fig. 5.1 superimposed on the mesoscopic prediction. The existence of this additional pore

nucleation barrier was stipulated by Evans et al. [46, 48] who refer to the state right after the
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nucleation barrier as a closed metastable defect state. In a series of experiments these authors

measured the distribution of rupture times after the onset of a gradually increasing stress in

the membrane. Using a three state kinetic model based on the characteristics of Fig. 5.1, they

were able to describe their data, thereby giving credibility to the existence of the hypothesised

pore nucleation barrier. From their data it follows that the closed metastable defect in the case

of lipid bilayers has a radius of about 0.6 nm. The height of the barrier is probably just a few

kBT , where kB is Boltzmann’s constant and T the temperature. Additional evidence for the

stipulated nucleation barrier was provided by the conductance measurements of Melikov et

al. [102], revealing that large ion conducting pores initially collapse to form nonconductive

(R l 1 nm) easily reopenable pre-pores with lifetimes up to a few hundreds of milliseconds,

before eventually closing completely.

Thus far, simulation studies of pore formation in bilayers have been limited to exposing

the bilayer to an extremely high tension, or elongation, and awaiting the inevitable; free

energy changes are not accessible in this set up. In this chapter we present the first simulation

study of the free energy change during the reversible opening of a small pore in a bilayer.

To this effect, we propose a method to calculate the free energy profile as a function of the

pore radius, under any desired surface tension, and apply it to a coarse grained amphiphilic

model for radii ranging from zero (i. e. the intact bilayer) upto the start of the mesoscopic

regime. In Section 5.2 we describe the theoretical methods that we have used to perform

these calculations, and in Section 5.3 we describe the simulation details. In Section 5.4 we

present our main results, which we finally discuss in Section 5.5.

5.2 Theory

As discussed in the previous section, we assume that pore formation in amphiphilic bilayers is

an activated process [46, 48]. The free energy landscape for such a process can be calculated

by means of the potential of mean constraint force (PMCF) method usually applied to study

rare events such as chemical and isomerisation reactions. This method allows one to obtain

the free energy as a function of some reaction coordinate ξ separating products and reactants,

even in cases where a high activation barrier renders the observation of a spontaneous transi-

tion extremely unlikely. In the case of pore formation in an amphiphilic bilayer, we consider
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products and reactants to be the intact bilayer and the metastable pre-pore respectively. The

specific choice of the reaction coordinate will be given in section 5.3.

In order to apply the PMCF method one has to fix the reaction coordinate throughout

the simulation. Fixation of the reaction coordinate is achieved by adding a constraint to the

Lagrangian of the free system,m
c � Γ � Γ̇ ��� m

f � Γ � Γ̇ � � λξ � ξ � Γ � � ξ � , (5.1)

where Γ represents the coordinates of configuration space and Γ̇ their velocities. The con-

straint on the reaction coordinate results in an additional force λξ ∇iξ on the ith particle. The

value of the Lagrangian multiplier λξ must be chosen such that the constraint ξ � Γ �n� ξ is

met at any instant of the simulation, and may be calculated numerically, as for example in

the SHAKE algorithm [121]. By doing so, the time derivative of the reaction coordinate au-

tomatically equals zero, ξ̇ � 0. The integral of  λξ � ξ with respect to ξ may be shown [106]

to be the potential of mean constraint force (PMCF). The angular brackets denote a run time

average, the subscript ξ indicates that the run is performed with the reaction coordinate me-

chanically constrained to the specific value ξ . It was conjectured by van Gunsteren [147] that

this potential is approximately equal to the free energy of the reaction coordinate ξ ,

F � ξ ��� � kBT ln
�

δ � ξ � Γ � � ξ � exp �(� βH � Γ � PΓ
��� dΓdPΓ. (5.2)

Here PΓ represents the generalised momenta conjugate to the coordinates Γ, H denotes the

Hamiltonian and β � 1 � kBT . Later it was shown by den Otter and Briels [38, 40, 41] that the

difference between the two functions can be calculated from the same constrained simulation

that needs to be performed to calculate  λξ � ξ . Recently their result was rewritten to a much

neater expression by Schlitter and Klähn [126]:

F � ξ ��� � ξ

0

 λξ � ξ dξ � kBT ln  Z � 1 B 2
ξ � ξ � F0. (5.3)

The second term on the right hand side is the metric tensor correction, with

Zξ
� N

∑
i � 1

1
mi

∇iξ S ∇iξ . (5.4)

It represents the difference between the phase spaces sampled by a system that is mechani-

cally constrained to ξ � Γ �E� ξ , hence ξ̇ � 0, and by a system that is restricted to ξ � Γ �o� ξ
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without a limitation on the velocity ξ̇ , as in Eq. (5.2). The last term in Eq. (5.3) is an arbitrary

constant F0, whose choice will be indicated in Section 5.4.

5.3 Simulation details

In our simulation we have used a coarse-grained model introduced by Goetz and Lipowsky

[62]. This model was successfully applied before to calculate the elastic modulus, bending

modulus and edge free energy of an amphiphilic bilayer [42, 61, 141] and, with some minor

changes, of a worm-like micelle [43]. Here we only give a brief description of this model. The

amphiphiles consist of one head particle and four tail particles, the latter representing three

to four CH2 groups each. The solvent particles, representing two water molecules, are iden-

tical to the head particles. Most nonbonded interactions are modelled by the usual Lennard-

Jones potential, ΦLJ � r �E� 4ε �(� r � σ � � 12 �p� r � σ � � 6 � , with σ = 1/3 nm and ε = 2 kJ/mol. Ex-

ceptions are the hydrophobic interactions between tail particles and head or water parti-

cles, which are mimicked by a purely repulsive soft core potential, ΦSC � r �q� ε � r � σSC
� � 9,

with σSC
� 1 ) 05σ . These potentials are implemented in the ‘shifted force’ fashion, ensur-

ing that both the potential and its first derivative vanish at the cut-off distance, rc
� 2 ) 5σ .

The particles of an amphiphilic molecule are held together by a harmonic bond potential,

Φbnd � l �1� 5000εσ � 2 � l � l0 � 2, with l0 � σ , while an angle potential Φang � φ �&� 2ε � 1 � cos � φ ���
introduces a bending stiffness between every set of three consecutively bonded particles.

There are no dihedral potentials. All particles have the same mass m = 36 a.u., which

combines with a number density of 2 particles per 3σ 3 to a specific weight of just over

1000 kg/m3. The temperature is 325 K, or 1.35ε � kBT , and is maintained by means of a

Nosé-Hoover thermostat [56]. A time step of r mσ 2 � ε � 500 j 2 ) 8 fs is used in the Verlet

leap-frog integration scheme [56]. The simulations were performed with a tailored version of

DL POLY 2.0 [131].

The initial simulation boxes were created by constructing two parallel square lattice layers

holding 24 A 24 straight amphiphilic molecules each, with their heads pointing outward, and

by randomly adding 10 800 solvent particles. The bilayers were oriented parallel to the square

xy face of the box. In the first box the sides L s of this face were matched to produce a

tensionless state, L2s � A0, which for the current model amounts to an area [35] of 1218σ 2.
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The second box was slightly elongated, under constant volume, to � L2s � A0
� � A0

� 3 ) 5%,

exposing the bilayer to a surface tension large enough to cause rupture of large vesicles in

experiments [48]. In order to cause spontaneous pore formation under simulation conditions,

much larger tensions [88] or elongations [141] need to be applied, resulting in too large areas

per head group to faithfully study the process of pore formation; an advantage of our method

is that we do not have to stress the bilayer. It proves convenient to run the PMCF calculations

at constant surface area, rather than at constant surface tension, as this avoids contributions

from volume rescaling moves to the free energy, and from the constraint to the pressure.

To minimise the effect of the area constraint on the density fluctuations within the bilayer,

we have used a system that is large compared to the maximum pore area. Production runs

typically lasted for 5 ns, and were preceded by thorough equilibrations.

Radii of pores were measured by means of a routine inspired by the Widom particle inser-

tion method for measuring the chemical potential in a fluid [56], as described in Chapter 6. In

a nutshell: the radius of a circular pore, measured from the centre of the pore to the centres of

the amphiphilic particles in the edge, is directly related to the fraction f of randomly inserted

test particles separated by more than rw
� 1σ along the xy direction from any amphiphilic

particle, R ��t f L2s � π � rw. This routine was slightly changed to be able to measure radii of

smaller pores. For this purpose, only distances to tail particles were taken into consideration

and rw was reduced to 0 ) 6σ . These smaller test particles have a finite probability of being

‘accepted’ in an intact bilayer, which is easily corrected for by subtracting the appropriate av-

erage background from f . Radii are then calculated using R � t f L2s � π � r f . By fitting the

new method to the previous one for large pore sizes we find r f
� � 0 ) 25σ , which compares

favourably with the maximum value of rw � l0 � � 0 ) 4σ suggested by the following simple

geometrical consideration: In an idealised picture, the amphiphiles closest to the centre of

the pore lie parallel to the plane of the bilayer, with their straight tails pointing away from the

centre. If the head particles are at a distance R from the centre, the tail particles nearest to the

pore are at R � l0, and test particles are accepted upto R � l0 � rw. In a real system the tilt of

the molecules, relative to the bilayer and to the radial direction, will reduce this distance.

Intuitively, the radius of a pore seems to be an appropriate reaction coordinate for the

PMCF method. In order to be eligible as reaction coordinate, however, a coordinate must

be a unique function of the configuration of the system, and the procedure used to calculate

69



5. NUCLEATION FREE ENERGY OF PORE FORMATION IN AN AMPHIPHILIC BILAYER

the radii of pores does not provide such a function. Instead we propose to use as a reaction

coordinate:

ξ � Σ � Σ0

ΣM � Σ0
, (5.5)

where

Σ � N

∑
i � 1

tanhri. (5.6)

Here ri
� t x2

i � y2
i is the distance, measured parallel to the bilayer plane, between the ith

tail particle and the centre of the pore, conveniently located at the origin of the coordinate

system, and N � 4068 is the number of tail particles in the box. For values of ri larger than

15 σ we make a smooth transition from tanhri to one. In Eq. (5.6), Σ0 is the average value

of Σ obtained from unconstrained simulations with the appropriate box size, i. e. 4598.22 for

the tensionless box and 4598.56 for the stretched box. ΣM denotes the maximum value of Σ,

reached when all tail particles are pushed away to distances larger than 15 σ , i. e. ΣM
� 4608.

Note that this poses an upper limit to the range of the reaction coordinate.

With the above definition of the reaction coordinate, constraining ξ to a positive (nega-

tive) value is equivalent to decreasing (increasing) the particle density near the origin. We

can thus impose onto the bilayer a localised density fluctuation large enough for a pore to

form or to close, in a deterministic fashion. By integrating the required constraint force, see

Eq. (5.3), we are able to determine the probability, ∝ exp �(� βF � ξ �
� , with which this density

fluctuation would have occurred in a non-constrained equilibrium system. Thus, the pore

does not have to open up spontaneously, which is an extremely unlikely and uncontrollable

event in a simulation. Nor is there the need to put the bilayer under an elongational stress,

while previous simulations of pore formation relied on extreme stresses to incite the system

to form a pore within the alloted time. Constrained simulations were performed for ξ ranging

from about -0.35 to nearly 1, storing the values of λξ and Zξ at every time step.

5.4 Results

The effects on the bilayer of constraining the reaction coordinate are illustrated by the top

views and cross sections depicted in Figs. 5.2 and 5.3 respectively.
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Figure 5.2: Top views of the centers of four amphiphilic bilayers, with the head particles in

grey and the tail particles in black. The patches measure 10σ A 10σ , and depict the final

configurations of runs at ξ � 0, 0.37, 0.80 and 0.92 (left to right). The particle insertion

method does not detect a pore in the first two patches, while the latter two are determined at

R � 0.95 and 1.48 σ . The circles are drawn to scale, solvent particles are omitted for clarity.

Figure 5.3: Cross sections of the four amphiphilic bilayers of Fig. 5.2, showing only those

particles whose x coordinate lies within 1 σ from the midplane. Head particles are grey, tail

particles are black, and lines denote bonds between connected particles. The depicted areas

measure 30σ A 10σ .
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Figure 5.4: The calculated free energy pro-

file as a function of the reaction coordinate ξ

(solid line) for a tensionless membrane. Also

shown are the integral of the Lagrange mul-

tiplier (PMCF, dashed) and the metric tensor

correction (dotted) of Eq. (5.3).
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Figure 5.5: Same as Fig. 5.4, but for a bilayer

under 3.5% elongation.

These, and many other snapshot we looked at, show that for low positive ξ the density of

tail particles near the origin is reduced, while the bilayer remains intact. A further decrease

of the density pulls the two layers of head particles locally towards each other. For ξ j 0 ) 55

the layer of tail particles starts to develop a pore, which is filled with head particles entering

from both sides. Next, the thermal motions of the head particles occasionally allow solvent

particles to squeeze through the membrane. Finally, for ξ about 0.8, the head particles at

opposite sides of the pore are pried apart, and a veritable transmembrane pore opens up. The

radius of this pore continues to grow with increasing ξ . By decreasing the reaction coordinate

we pass through the same phases in reverse order.

The free energies of pore formation as a function of ξ , as obtained by using Eq. (5.3), are

shown in Figs. 5.4 and 5.5 for the tensionless membrane and for the membrane with a slight

elongation of 3.5%, respectively. In both cases, the value of F0 in Eq. (5.3) has been chosen

such that� kBT ln
�

exp � � βF � ξ � L s � 	 dξ � 1
2

KAA0 u L2s � A0

A0 v 2

. (5.7)

The left hand side yields the total free energy of a square membrane with a given side L s ,
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Figure 5.6: Average pore radius  R � ξ as a function of the reaction coordinate ξ for the ten-

sionless bilayer, calculated by the old (squares) and new (circles) particle insertion method.

The constant and negative radii found for intact bilayers, ξ l 0 ) 5, are artefacts of using an

insertion method to detect a non-existing pore. The line, combining a fit to the data (solid)

with a linear extrapolation to R � 0 at ξ � 0 (dashed), defines R � ξ � . The standard deviation

in the radii is about 0.1 σ .

,

which for an elastic membrane is known to follow the expression on the right hand side.

The elastic modulus KA equals 8.2 εσ � 2 or 250 mJ m � 2 for the current model [35] and A0 is

the area of the tensionless bilayer introduced previously. Interestingly, both calculated free

energies are nearly quadratic in ξ up to about 0.35. The figures also show the separate con-

tributions of the integrated Lagrange multiplier and the metric tensor correction in Eq. (5.3).

In order to discuss our results in intuitively accessible terms, we would like to use the pore

radius R as a reaction coordinate instead of ξ . To this end, we have calculated the average

radius  R � ξ as a function of ξ , and plotted the results in Fig. 5.6. While the old particle

insertion method [141] is not capable of measuring pore radii less than about 1 σ , i. e. a pore

just about big enough to fit a solvent particle, the modified method described in Section 5.3

can be applied to much smaller pores before it too becomes indiscriminate. We expect the

latter approach to be accurate for R downto about rw � r f
� 0 ) 35σ , corresponding to a cavity

the size of a test particle in the layer of tail particles – note that at this R the head particles

form two closed layers, see Figs. 5.2 and 5.3. The drawn line in Fig. 5.6 is a fit for larger
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Figure 5.7: Free energy of a tensionless bi-

layer as a function of the pore radius. As in

Fig. 5.6, the solid line denotes states with a

detectable pore. The dotted region is based

on an extrapolation, such that near the mini-

mum of the curve R effectively measures the

excess particle density around the origin. The

dotted line is a fit to the mesoscopic theory of

Eq. (5.9).
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Figure 5.8: Same as Fig. 5.7, but for a bilayer

under 3.5% elongation.

radii. Below 0.35 σ we used a spline to make a smooth transition to a linear extrapolation

running through R � 0 at ξ � 0, such that the derivative dR � dξ is continuous and differs

from zero everywhere. The result is illustrated for the tensionless state by the dotted line

in Fig. 5.6, and is virtually identical for the stretched system. Together they constitute our

definition of a coordinate R � R � ξ � , completely defined by ξ and therefore well defined for

any configuration Γ. Since R is equal to the radius of a pore in those cases where a radius is

well defined, and otherwise is a smooth extrapolation to R � 0 for the unconstrained intact

membrane, we henceforth call it the radius of a pore. Note that for small radii our definition

of R is proportional to Σ, and hence to the tail particle density near the origin.

Using this definition of R, we have calculated the free energy from

F � R �w� � kBT ln
�

δ � R � Γ � � R � exp �(� βH � Γ � PΓ
�
� dΓdPΓ� F � ξ � � kBT ln

dR
dξ

(5.8)
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and plotted the result in Fig. 5.7 for the tensionless membrane and in Fig. 5.8 for the slightly

stretched membrane. In order to comply with our previous use, we have represented F � R � by

a drawn line for those values of R which correspond to measurable radii and by a dashed line

where R is defined by extrapolation. For the larger values of R the free energies should be

describable by a mesoscopic model like Litster’s, augmented with an additive term resulting

from the nucleation of a pore. For a punctured membrane with fixed lateral dimensions, as

opposed to the fixed tension case considered by Litster, this free energy reads [141]

F � R � L s ��� KA

2A0 ` L2s � πR2 � A0 a 2 � 2πkCR � Fnucl � L s � . (5.9)

The dotted lines in Figs. 5.7 and 5.8 represent fits of this equation to our results. The contri-

bution from the surface elasticity is small, suggesting that the area constraint does not restrict

density fluctuations very much. From the fits we obtained kC
� 3 ) 62 and 3.69 εσ � 1 for the

tensionless and stretched box respectively, and Fnucl
� 7 ) 2 and 5.7 ε respectively. Not only

are the two values of kC almost identical, they are also consistent with the ones obtained in

our previous simulations of large stable pores [141]. The method described in the present

chapter has the advantage over the one in Chapter 6 that it can be applied to much smaller

simulation boxes, which may be a necessity when atomistic models are used.

5.5 Discussion and conclusions

We have presented a method to calculate the change in free energy of an amphiphilic bi-

layer during the opening of a pore, and applied it to a coarse grained model mimicking lipid

bilayers. Previous pore opening simulations had to rely on the unpredictable spontaneous

opening of a pore, which necessitated a high surface tension and which ruled out a determi-

nation of the relevant free energy changes. By means of a constrained reaction coordinate,

we are able to smoothly open and close a pore, regardless of the surface tension, allowing a

direct evaluation the the free energy profile. Unlike in most previous free energy calculations,

the constrained reaction coordinate is chosen not on the basis of some geometrical property

(for example, a bond length or an angle), but such as to allow control of the density of tail

particles within a given distance from the centre of the membrane. It is interesting to note

that this reaction coordinate gives rise to rather large entropic correction terms describing the
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difference between the potential of mean constraint force (PMCF) and the true free energy

function. Whereas usually these corrections amount to less than 1% of the final free energy

difference, in the present case they were as large as 10%.

For the larger pore radii, R T 1σ , we obtained an excellent match of the calculated free en-

ergy profile with a mesoscopic model similar to Litster’s model, for a line tension coefficient

equal to 3.7 εσ � 1 or about 3.7 A 10 � 11 Jm � 1. This results lies in the range of experimentally

observed values, and is in good agreement with an earlier study [141] in which the line ten-

sion coefficient of the same system was obtained by comparing pore radii of much larger

stable pores under various elongations to the predictions of the mesoscopic model, Eq. (5.9).

Remarkably, the mesoscopic free energy expression holds for these rather small pores, with

a line tension coefficient that is virtually independent of the curvature R of the edge.

For the intact bilayer, i. e. R j 0, the quadratic minima in the free energy curves mea-

sure the probability distributions of small local density fluctuations. The standard deviations

calculated from these free energy functions coincide with those obtained from thermal fluctu-

ations in unconstrained equilibrium simulations. Beyond the thermal range the free energies

rise rapidly, upto some 15 kBT at R j 0 ) 25σ . With increasing values of R, tail particles are

gradually expelled from the centre of the bilayer, thereby strongly reducing the thickness of

the bilayer at the origin for R � 0 ) 25σ . By pushing the tail particles away from the centre, the

amphiphilic molecules involved in this process, choose to tilt in order to continue to shield

the remaining tail particles from the solvent. At R j 0 ) 75σ a pore-like state is obtained in

which diametrically opposed head particles start to lose contact. At the pre-pore state the free

energy of the bilayer has risen by some 25 ε , or 18 kBT , over the collective free energy of

the intact bilayer, making pore formation a rare, activated process. For even larger radii we

observe a transition to the mesoscopic regime, as discussed above.

The calculated free energy profile does not contain an activation barrier to pore closure as

expected on intuitive grounds and as invoked by Evans et al. [46, 48] and Melikov et al. [102]

to explain their experimental results. Since the coarse grained model faithfully reproduced a

number of bilayer properties to within the experimental range, notably the elastic modulus,

bending rigidity and edge free energy coefficient, this result was unexpected. Despite the

absence of a metastable pre-pore state, the current profile with its pronounced barriers to

pore formation and to rupture may be expected to have a similar, albeit much less pronounced,
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Figure 5.9: Differences between the exact free energy functions and the mesoscopic theory

of Eq. (5.9), for the tensionless (solid and dashed) and the stretched (dotted and dash-dotted)

membrane. For reference, the average thermal energy, kBT , equals 1.35 ε .

influence on the rupture dynamics of stressed intact membranes as the three state model used

by Evans et al. In order to emphasise the influence of the particular rearrangements of the

amphiphiles needed to create a pore, we have plotted in Fig. 5.9 the difference between the

exact free energy and the mesoscopic representation given in Eq. (5.7). This plot reveals that,

contrary to the full free energy, the contribution resulting from pore creation does go through

a maximum and that for values of R equal to about 1 σ (or 1/3 nm) a pre-pore has developed.

The differences are similar for the tensionless and the stretched membrane, with the latter

having a slightly higher maximum, suggesting that the effect of tension is limited. Although

the height of the maximum in Fig. 5.9 is not large enough to create a local maximum in the

total free energy, we nevertheless feel that our results add to the credibility of a metastable

pre-pore state as hypothesised by Evans et al. Assuming that the current difference plot

also applies to a bilayer with a smaller edge energy coefficient, like the 6 A 10 � 12 Jm � 1 or

0.6 εσ � 1 reported by Evans et al. [48], the bilayer would have had a metastable pore. It

is probable that the energy and entropy of the amphiphilic rearrangements needed to create

a pore are not sufficiently well described by a coarse grained model. An atomistic model,

possible in combination with a different amphiphilic architecture, will probably produce a

more pronounced barrier.
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6
Simulations of stable pores

in membranes - system size

dependence and line tension

Amphiphilic bilayers with a pore were simulated using a coarse grained model.

By stretching the bilayer to 70% beyond its equilibrium surface area, we estab-

lished the phase diagram of pores, identifying regions where pores are stable,

metastable or unstable. A simple theoretical model is proposed to explain the

phase diagram, and to calculate the critical and equilibrium relative stretches.

Interestingly, these are found to scale with the inverse cubic root of the number

of amphiphiles in the bilayer, thus explaining the order of magnitude difference

between the simulated and the measured values. Three different methods are

used to calculate a line tension coefficient of � 3 ) 5 � 4 ) 0 � A 10 � 11 J/m, in good

agreement with experimental data. 5
6.1 Introduction

Bilayers of amphiphiles or lipids are of great importance to living tissues, where they serve

as the membranes surrounding cells and compartments within cells [137]. The formation of

a pore in a bilayer, e. g. when the membrane is exposed to a mechanical stress, can have dire

consequences for the cell: its contents can leak out and infective agents can sneak in, which

could ultimately prove fatal. On the positive side, pores play a crucial role in the fusion

of membranes, the transport of ions across the membrane, and they are convenient when

inserting medicinal molecules or genes into the cell. These realisations drive the ongoingF The work described in this chapter has been accpeted to J. Chem. Phys. [141].
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research in amphiphilic bilayers, and of pores in particular.

Several experimental techniques are available for producing a pore in a bilayer, usually

the taut membrane of a swollen vesicle, including exposure to mechanical stress [49] or a

strong electric field (electroporation) [102], optical illumination [123], imploding bubbles

[97], adhesion at a substrate [123], optical tweezers [14] and puncturing by a sharp tip [91].

The resulting pore is usually short-lived, as either the structurally weakened bilayer succumbs

to the prevailing surface tension, or the line tension causes the pore to close rapidly. The

latter transient pores usually give themselves away only by the (dyed) material that flows

through the pore before closure. Over the last decade some ingenious techniques have been

developed to significantly extend their life time, namely by performing the experiment in a

highly viscous solvent [123], or by using aspiration into a micropipet to maintain a surface

tension that can balance the line tension [159]. From these and other measurements, line

tensions ranging from 0.5 to 5 A 10 � 11 J/m have been reported [23, 49, 91, 105, 159].

Pores have also been studied using molecular dynamics simulations. Some authors have

run simulations in full atomistic detail [98, 139, 158], but it is more common to resort to

coarse grained models [52, 64, 92, 107, 109] as they allow for larger system sizes and longer

simulation times. Other computer simulations have modelled membranes with pores as a

fluid network in which vertices can be broken and formed [128], or by density functional

calculations of a bilayer exchanging amphiphiles with the surrounding solvent [108, 138].

The overall picture that emerges from the molecular dynamics simulations is that transient

pores appear and disappear spontaneously, at low or vanishing surface tension, either if the

line tension of the amphiphilic model is low [52, 92], or if the bilayer is weakened by de-

fects such as a stalk [107, 109] or additives [64]. Intact bilayers with large line tensions can

withstand large relative stretchings (see [64] and this work) or lateral pressures [139] before a

pore opens, while considerably smaller stretchings or pressures are required to keep an exist-

ing pore open. The actual numerical values stand in sharp contrast to the experimental data,

where relative stretchings of an order of magnitude less are found to suffice [86, 159]. The

scaling of this property with system size constitutes an important part of the present research.

In the theoretical model of Litster [90], the free energy difference between an intact bi-

layer and one containing a pore of radius R is given by ∆F � 2πRΓ � πR2γ , where γ and

Γ are known as the surface and line tensions respectively. From the model it follows that
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pores reseal if their radius lies below a critical radius R 5 � Γ � γ , corresponding to a max-

imum in ∆F, while larger pores grow indefinitely. Some of the above experiments are in

conflict with the latter prediction, however, because pores larger than R 5 have been observed

to reseal [123, 159]. Moreover, in some simulation studies large pores were even found to

be stable (at least, over the time scale available in the study). Since in these simulations the

stretchings are quite large, and the chemical potential is not among the control parameters,

we prefer an elastic interpretation of the free energy of the bilayer [52, 133]. In a Taylor ex-

pansion of our model in the limit of small stretchings, the two leading terms are of the same

form as in Litster’s model. Most other theoretical studies of pores in bilayers have focused

on the actual formation process of pores, as thermal fluctuations surmounting an activation

barrier [55, 60, 127], a process we will not study here.

The remainder of the chapter is organised as follows: in Section 6.2 we describe the de-

tails of our model, and the algorithm used in the determination of the pore radius. Simulation

results and theory alternate in Section 6.3, where three different approaches are taken towards

calculating the line tension coefficient. Our main results are summarised and discussed in

Section 6.4.

6.2 Simulation details

Amphiphiles and solvent molecules were represented with a coarse-grained model intro-

duced by Goetz and Lipowsky [61, 62], inspired by the work of Smit et al. [129] in the

early nineties. We restrict ourselves to a very brief description of this model. Each am-

phiphile consists of one head particle and four tail particles, the latter representing three to

four CH2 groups each. Solvent particles, representing two water molecules, are identical to

head particles. Nonbonded interactions are modelled by the usual Lennard-Jones potential,

ΦLJ � r �&� 4ε �f� r � σ � � 12 �x� r � σ � � 6 � , where σ � 1 � 3 nm and ε � 2 kJ/mol, with the exception of

the hydrophobic interactions between tail particles and head or water particles, which are de-

scribed by purely repulsive soft core potentials, ΦSC � r �:� ε � r � σSC
� � 9, where σSC

� 1 ) 05σ .

All potentials are assumed to be of the ‘shifted force’ type, ensuring that both the potential and

its first derivative vanish at the cut-off distance, rc
� 2 ) 5σ . The particles of an amphiphilic

molecule are held together by harmonic springs, Φbnd � l �:� 5000εσ � 2 � l � σ � 2, while bond-
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angle dependent potentials Φang � φ �o� 2ε � 1 � cos � φ �
� introduce a bending stiffness between

every set of three consecutively bonded particles. There are no dihedral potentials. All par-

ticles have the same mass m � 36 a.u., which combines with a number density of 2 particles

per 3σ 3 to a specific weight of just over 1000 kg/m3.

The equilibrium surface area per amphiphile a0 and the compressibility modulus KA for

the above model were calculated by den Otter and Briels [42]. After having corrected a slight

mistake, we have calculated these properties again and found a0
� 2 ) 12σ 2 or 23.5 Å2 and

KA
� 8 ) 2εσ � 2 or 250 mJ m � 2 for the system size used here [35], in good agreement with

Goetz and Lipowsky [61] and with experimental results.

The simulation boxes contained 1152 amphiphiles and 10 800 solvent particles. Starting

configurations were made by first constructing two parallel square lattice layers, containing

one (zero in the case of an intact bilayer) nearly circular pore in the middle. Each layer

consisted of 576 straight amphiphilic molecules with their heads pointing outward. Lattice

constants were chosen such that the periodic simulation boxes had predescribed total areas

L2s . Next, the boxes were filled randomly with 10 800 water particles. Perpendicular box

dimensions L y were chosen such that in all cases a number density of 2 particles per 3 σ 3

was obtained. All simulations were done at constant (N,V ,T ). The temperature was 325 K,

or 1.35 ε � kB, in all cases and was maintained by means of a Nosé-Hoover thermostat. The

simulations were executed with a slightly adapted DL POLY 2.0 package [131], using the

Verlet leap-frog integration scheme with a time step of r mσ 2 � ε � 500 j 2 ) 8 fs.

Each system was run long enough to reach a free energy minimum corresponding to a

stable pore or a meta-stable pore. Pore areas were measured using a method inspired by the

Widom particle insertion method for measuring chemical potentials [56], The amphiphilic

particles constituting a bilayer (heads and tails) were projected onto the basal plane and test

particles were randomly inserted in this plane. Those test particles which had no amphiphilic

neighbours within a distance of rcw
� 1 ) 0σ were ‘accepted’, while the others were ‘rejected’.

After M � 25000 insertions, the area Ah of the pore was calculated according to

Ah
� L2s Macc

M
, (6.1)

where L s is the length of the simulation box parallel to the bilayer and Macc is the number of

accepted particles. Using a routine to identify clusters [136], we verified the connectivity of

the accepted test particles. In this way we detected occasional outliers, but never a secondary
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Figure 6.1: Top view of a bilayer with a pore. The large black dots stand for head particles

and the large grey dots for tail particles. The ‘accepted’ Widom test particles (see Section 6.2)

are plotted as small black dots. Note the strip of 1 σ width between the outermost accepted

test particles and the head particles forming the rim of the pore.

pore of any significant size or life time. A typical example of the distribution of accepted

particles is given in Fig. 6.1. The average ratio of the eigenvalues of the inertia tensor of the

cloud of accepted particles was found to be  Ixx � Iyy �oj 1 ) 28. Considering that an ellipse of

this particular shape has a circumference only 1 % larger than that of a circle with the same

area, we are justified in assuming henceforth that pores are circular. Radii of pores were

calculated as R � r � Ah � π � � 1, where the addition of one takes into account the width rcw

of the Widom test particles, see Fig. 6.1.

6.3 Theory and results

In this section we present the results of our simulations along with some theoretical expres-

sions needed to interpret these results.

In our theoretical considerations we assume that all of our membranes are flat and that

contributions to their free energies from fluctuating undulations may be neglected. The free

energy of a periodic square bilayer of length L s , containing a circular pore of radius R, then
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reads

F � KA

2A0 ` L2s � πR2 � A0 a 2 � 2πkCR. (6.2)

The first term accounts for elastic deformations of the membrane, where A0
� Na0 � 2 �

1218σ 2 is the area of the tensionless membrane without a pore. The last term represents the

edge free energy due to the circumference of the pore; kC is the free energy per unit length

of edge and will be called the line tension coefficient. Some examples of the free energies as

a function of the radius of the pore are displayed in Fig. 6.2 for several values of the relative

stretch � L2s � A0
� � A0; the value of kC has been chosen equal to the one that we will finally

find to describe our data.

6.3.1 Phase diagram

In this subsection we describe the phase diagram representing the radius of the pore in a

punctured membrane as a function of the relative amount of stretching.

We have simulated a number of punctured periodic membranes with different relative

stretchings for sufficiently long times for the systems to settle in stable or metastable equilib-

rium states. For the larger values of stretching this resulted in the presence of pores with well

defined radii, while for the smaller stretchings the initially created pores disappeared. The

results of our simulations are represented by the symbols in the phase diagram of Fig. 6.3.

From a theoretical point of view, the final states of our simulation boxes correspond to

local minima of the free energies as functions of the pore radius R for the given values of rel-

ative stretchings. Taking the derivative with respect to R of the free energy given in Eq. (6.2),

and equating it to zero, we obtain after some rewriting

L2s � A0

A0

� π
R2

A0
� kC

KA

1
R

. (6.3)

As can be seen in Fig. 6.2, for relative stretchings larger than some critical value this

equation has three roots, one of which is negative and two of which are positive. The two

positive roots, corresponding to a maximum and a minimum of the free energy respectively,
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Figure 6.2: Theoretical free energy curves F , see Eq. (6.2), as a function of the pore radius

R, for various relative stretchings of the bilayer. The numerical values of KA, A0 and kC are

those of the bilayer studied here.
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Figure 6.3: Average pore radius as a function of the relative stretch for a bilayer of 1152

amphiphiles (outer lines, open symbols) and for one of 288 amphiphiles (inner lines, solid

symbols). Stable pores are marked by circles. The square denotes the average radius, before

closure, of an metastable pore. Unstable pores that closed within 10 ns are denoted by tri-

angles. The drawn lines representing the theoretically predicted stable states, see Eq. (6.4),

were obtained by fitting the data of the bigger bilayer, with kC as the only free parameter.

The dashed lines give the metastable states, and the dotted lines the location of the activa-

tion barrier. The equilibrium and critical relative stretches of the large bilayer are marked by

arrows.

are given by

Rmin
� 2 u L2s � A0

3π v 1 B 2

cos ` α
3 a , (6.4)

Rmax
� � 2 u L2s � A0

3π v 1 B 2

cos . α � π
3 / , (6.5)

where

cos � α ��� � kC

2KA

A0

π u L2s � A0

3π v � 3 B 2

. (6.6)

Fitting the first of these to our simulation results, see Fig. 6.3, we found the line tension
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Figure 6.4: The local minima and maxima of the free energy of the intact bilayer and of the

punctured bilayer, as a function of the relative stretch. The drawn line stands for stable states

(with or without a pore), the dashed line for a metastable bilayer with a pore, the dash-dotted

line for a metastable intact bilayer, and the dotted line for the activation barrier.

coefficient kC to be equal to 3 ) 5εσ � 1 or 3 ) 5 A 10 � 11 J/m. Additional simulations on a smaller

system of 288 amphiphiles and 2700 solvent particles are also well described by the same

KA, a0 and kC. The line tension coefficient compares favourably with the above cited range

of experimental values, � 0 ) 5 � 5 � A 10 � 11 J/m.

In Fig. 6.4 are shown the free energies of the minima and maxima, together with those

of the intact bilayers, as a function of their relative stretchings. The drawn line represents

the stable states of the membrane. For relative stretchings larger than 0 ) 186, punctured mem-

branes with pore radii equal to Rmin have the lowest free energies and therefore represent the

stable states. For smaller relative stretchings the intact membrane has the lowest free energy.

When the relative stretching is exactly 0 ) 186, the punctured and intact membranes have equal

free energies and the system can choose freely between them. We call this the equilibrium

relative stretching.

For relative stretchings between 0 ) 148 and 0 ) 186 the punctured membrane is metastable.

Both in Fig. 6.3 and in Fig. 6.4 these states are represented by a dashed line. Below the critical

relative stretch of 0 ) 148 no stable or metastable punctured membrane exists. Figure 6.5 shows
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Figure 6.5: Area of a pore as a function of time for a run well below the critical point (solid

line, relative stretch of 12%) and a run just below the critical point (dashed line, relative

stretch of 14%).

the areas of pores in two artificially punctured membranes with relative stretchings smaller

than 0 ) 148. For a stretching value of 12% the pore closed immediately, while for a stretching

value of 14%, i. e. just below the critical relative stretch, it took about 1.8 nanoseconds.

The large fluctuations in the latter case are due to the flatness of the free energy surface in

the neighbourhood of the critical point, with a critical pore area of about 50 σ 2. Here the

free energy has an inflection point from which two branches, of local minima and maxima

respectively, extend to larger values of the relative stretching. At the critical point Rmin and

Rmax coincide.

With increasing values of the relative stretch above the critical point, the free energy

difference between the metastable local minimum and the unstable local maximum quickly

grows from zero at the critical point to nearly 20 kBT at the equilibrium point. As a result,

metastable punctured membranes in the neighbourhood of the equilibrium point have to over-

come a high activation barrier before they can settle in the stable intact state. For example, the

metastable state occurring in Fig. 6.3 at a stretching of 15% i. e. just above the critical point,

already survived for 12.5 ns before yielding. The next point in the figure was still open when

the run was aborted after 20 ns (about one month on a DEC alpha), and is therefore marked
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‘stable’ in the plot. For relative stretchings larger than the equilibrium one, the intact mem-

brane constitutes the metastable state. The barrier between the metastable intact membrane

and the stable punctured membrane gradually becomes smaller, starting from nearly 20 kBT

at the equilibrium point to zero for infinite stretchings, with a concomitant decrease in the

radius Rmax of the transition state. Given that only barriers of a few kBT can be surmounted

on the time scale covered in molecular dynamics simulations, we conclude that by stretching

an intact membrane a pore can be created only at stretching values much larger than the equi-

librium stretching. In our simulations, rupture was not observed till a relative stretch of 37%,

twice the equilibrium stretch. When finally the membrane gives in, the pore that is created is

of course much larger than the one that would have been created at the equilibrium point.

6.3.2 Critical and equilibrium points

From our simulations it follows that the critical and equilibrium relative stretchings occur

at 14.8% and 18.6% respectively, and these values are even higher for the smaller bilayer.

Experimentally, however, it is known that membranes typically rupture (lysis) under a strain

of about 2% [50, 86]. In order to understand this seeming discrepancy, we have calculated

these values analytically as functions of the system parameters KA, kC and A0.

The equilibrium relative stretch occurs when the free energy of the intact layer equals the

free energy of the punctured layer, i. e. when

KA

2A0
� L2

Eq � A0 � 2 � KA

2A0
� L2

Eq � πR2
Eq � A0 � 2 � 2πkCREq. (6.7)

This equation must be solved simultaneously with

L2
Eq � A0

A0

� π
R2

Eq

A0
� kC

KA

1
REq

, (6.8)

which guarantees that the free energy of the punctured state is at a minimum. A little bit of

algebra yields

L2
Eq � A0

A0

� 3 . kC

2KA / 2 B 3 . A0

2π / � 1 B 3

, (6.9)

REq
� . kC

KA

2A0

π / 1 B 3

. (6.10)
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The area of this pore is related to the excess area by πR2
Eq

� 2
3 ` L2

Eq � A0 a . The critical point

occurs when the two extrema of the free energy coincide, i. e. when α � π in Eqs. (6.4) and

(6.5), from which

L2
c � A0

A0

� 3 . kC

2KA / 2 B 3 . A0

π / � 1 B 3

, (6.11)

Rc
� . kC

KA

A0

2π / 1 B 3

, (6.12)

and the area of the pore equals one third of the excess area.

The important point now is that both the critical and the equilibrium relative stretchings

are proportional to A � 1 B 3
0 , and hence to N � 1 B 3, i. e. the larger the membrane, the smaller

the strain it can support. Of course, the critical and equilibrium radii must also grow with

system size, which they indeed do proportional to A1 B 3
0 or N1 B 3. These scaling laws are

clearly confirmed by the simulation results presented in Fig. 6.3. It is interesting to notice

that actually it is not A0, but the combination of A0 and kC � KA, which governs the scaling

of the critical and equilibrium relative stretchings and radii. Finally, we notice that both the

ratio of the critical radius to the equilibrium radius and of the critical relative stretch to the

equilibrium relative stretch are independent of the system size.

Experiments [50, 86] have shown that amphiphilic bilayers can not support the amount

of stretch that we attribute to the equilibrium point of our simulation model. In their study of

red blood cells, Evans et al. [50] note that ‘the maximum area change where immediate lysis

occurred was about 4%. Lysis occurred within about 20-30 s for area changes of about 2%.’

Using the above scaling argument, we find that for a typical area of 100 µm2 the equilibrium

point of our model lies at a relative stretch of about 0.2%. Although this value lies below

the onset of rupture in experiments, we think it is satisfying. On the one hand, the simple

theory used here leaves room for improvement, which we are currently investigating [140].

On the other hand, as pointed out above, the point of rupture is determined by the stretch as

well as the exposure time. It is likely, therefore, that rupture experiments overestimate the

equilibrium point.

The equation for the critical radius can also be compared with experimental results. In

the experiments by Zhelev and Needham [159] on SOPC/CHOL, a pore was created by elec-

troporation and stabilised by keeping the bilayer under tension through gradual aspiration

of the bilayer into a micropipet. Pore radii were obtained from measurements of the volu-
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metric flow through the pore. The final pore radius just before collapse must be comparable

with our critical pore radius. For comparison we take their liposome radius of 16.0 µm2,

i. e. an equilibrium surface area A0
� 3200 µm2. From their Table I we obtain Rc

� 0 ) 51 µm,

whereas Eq. (6.12), together with our values of KA and kC, yields Rc
� 0 ) 42 µm. Since our

line tension coefficient kC is in good agreement with the experimental one for SOPC/CHOL,

the good agreement of the two critical radii implies that the elastic coefficient KA must also

agree with the experimental one. The theory thus provides an explanation, alternative to the

dynamical stabilisation put forward by Moroz and Nelson [105], for these giant quasi-stable

pores, and for their rapid closure. The vesicles studied by Zhelev and Needham were all of

roughly the same size, with one exception. This deviant vesicle contained nearly three times

as many amphiphiles, and had the largest pore radius. On the basis of this single point, and

considering the broad distribution of radii measured for the smaller vesicles, one can at most

conclude that the experimental date are commensurate with the power law derived here.

6.3.3 Tension

The change of the free energy of a simulation box upon a change of the parallel box length,

at constant total volume, reads as. dFbox

dL s / N G V G T � L y L sz� 2pzz � pxx � pyy
�:� 2L s Σ. (6.13)

Here, by definition the left-hand side is equal to

∂F
∂L s � ∂F

∂R
∂R
∂L s , (6.14)

the first step on the right-hand side is based on the thermodynamic expression for the pressure

tensor, and the second step defines the tension Σ. For Fbox we may read the free energy of

the bilayer, Eq. (6.2), because the free energy of the solvent does not change under a volume

conserving box deformation. Since ∂F � ∂R � 0, we then easily arrive at:

Σ � kC

R
. (6.15)

The above result offers the opportunity to measure the line tension coefficient directly

from the simulations, without necessarily knowing the elastic coefficient nor the equilibrium

area. In Fig. 6.6 we have plotted the tensions of the punctured membranes, calculated from
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Figure 6.6: The tension on the bilayer plotted against the average radius of the pore. Circles

mark the simulation results for a large system (open symbols) and a small system (solid

symbols), the line is a fit according to Eq. (6.15).

the pressure difference in Eq. (6.13), against their pore radii. A fit of the large bilayer to the

above equation yields kC equal to 3.9 εσ � 1 or 3 ) 9 A 10 � 11 J/m, in good agreement with our

previous result in Section 6.3.1, and consequently with experiments.

Since the equilibrium pore radius increases with increasing membrane size, Eq. (6.15)

says that large membranes will rupture under small tensions, and hence under small relative

stretches. This is illustrated in Fig. 6.7, where the tension on the ruptured bilayer is plotted

as a function of the relative stretch. With increasing system size, the curve moves into the

wedge formed by the tension-less state, Σ � 0, and the linear tension profile of the intact

elastic bilayer, Σ � KA ` L2s � A0 a � A0. The theoretical curves, based on the fit to the large

bilayer in Fig. 6.3, are seen to match the simulation results for both bilayers. We attribute

the small deviations of the small bilayer to the neglect of thermal fluctuations in Eq. (6.2).

Elsewhere we describe how the thermal undulations of an intact membrane result in a weak

system size dependency of the effective elastic modulus and equilibrium area entering this

expression [35].

It is instructive to compare the tensions of the punctured and intact membranes at the

equilibrium point. To this end, we write the equilibrium tension of the punctured membrane
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Figure 6.7: The tension on the bilayer plotted against the relative stretch. See Fig. 6.3 for

the interpretation of the lines and markers. The straight diagonal lines describe the stable and

metastable states of an intact bilayer.

as

Σpore
Eq

� kC

REq

� 1
3

KA
L2

Eq � A0

A0
. (6.16)

The tension of the intact membrane at the same relative stretching is

Σintact
Eq

� KA
L2

Eq � A0

A0
. (6.17)

Assuming that an intact membrane ruptures near its equilibrium point, we conclude that the

tension will drop by a factor of 2/3 as rupture takes place. Conversely, the tension will rise

by 50% when a pore closes at the critical point.

Finally, we have performed one more simulation to provide an alternative calculation of

the line tension coefficient. In this case the simulation box contained a bilayer strip consisting

of 1152 amphiphiles, surrounded by 10800 solvent particles. All simulation details were

identical to those described in Section 6.2. The free energy of such a bilayer reads

F � KA

2A0
� L s w � A0 � 2 � 2kCL s , (6.18)

where w is the width of the strip. At a given value of L s , the width will adjust itself such

that the free energy is minimal, eliminating the surface term from the above expression. The
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tension is then found to be given by

Σ � kC

L s , (6.19)

The line tension coefficient received from Eq. (6.19) was 4.0 εσ � 1 or 4 ) 0 A 10 � 11 J/m. All

calculated line tension coefficients are in good agreement with one another, and lie in the

experimental range [23, 49, 91, 105, 159].

6.4 Summary and discussion

Using a coarse grained amphiphilic model, we have simulated a punctured amphiphilic bi-

layer under various stretching conditions. The phase diagram, showing the dependence of

the pore radius on the relative amount of stretching, could well be described on the basis of a

simple free energy containing elastic and edge free energies only. The line tension coefficient

kC obtained from our simulations equals (3 ) 5 � 4 ) 0 � A 10 � 11 J/m, which is in good agreement

with available experimental values for such systems: � 0 ) 5 � 5 � A 10 � 11 J/m.

The phase diagram for a membrane of 1152 amphiphiles shows that between 0 and 18.6%

of relative stretch the intact membrane is stable, while at the latter point, like at a first order

thermodynamic phase transition, the membrane suddenly opens up to accommodate a stable

pore. Between 14.8 and 18.6% of relative stretching, the possibility of accommodating a

metastable pore exists. The first of these values is called the critical relative stretching and

the latter the equilibrium relative stretching. Although obviously no free energy barrier exists

between the stable intact membrane and the metastable punctured membrane at the critical

point, such a barrier quickly develops on going to larger amounts of relative stretching. At

the equilibrium point this barrier amounts to 20 kBT . The existence of such a barrier has often

been invoked to explain why during molecular dynamics simulations of stretched intact mem-

branes hardly ever rupturing occurs. This can not be the only reason however, since already

our equilibrium relative stretching is much larger than the one usually found experimentally.

In order to explain the above discrepancy, we have undertaken a finite size scaling analysis

by calculating analytically the dependence of the phase diagram on the equilibrium size of

the system. It turns out that, basically because the elastic surface free energy and the edge

free energy scale differently with system size, that the phase diagram moves towards lower
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values of relative stretching with increasing system size. Taking these effects into account, we

find a satisfying agreement between calculated and experimental critical relative stretchings.

A similar analysis has been given by Binder [20] in the case of nucleation free energies in

supersaturated gases.

For the simulations presented here we used the NA s L y T ensemble, with the projected

bilayer area and the perpendicular box height related by the condition of a fixed total volume,

V � A s L y . This particular choice is suggested by Eqs. (6.2) and (6.13). Since experiments

are commonly carried out under constant perpendicular pressure, rather than under constant

volume, the NA s p y T ensemble offers an attractive alternative. A closer inspection of our

simulations reveals that the variation of p y with A s amounts to just 1%, so we do not expect

significant differences between the two ensembles. In this context we want to point out an

interesting consequence of Fig. 6.7 for simulations in the constant surface tension, NΣp y T ,

ensemble. The intact bilayer requires the common negative feedback algorithm, as present

in all barostats: if the tension is too high, the area is reduced to drive the system back to the

desired tension. But because the slope of Σ versus A s changes sign after the formation of a

pore, the punctured bilayer needs a positive feedback algorithm instead: if the tension is too

high, the area should be increased in order to reduce the tension. A negative feedback will

tear a punctured bilayer apart, as has been observed in numerous simulations.

Since our theoretical description is macroscopic, it can not be applied at very small values

of the pore radius. In particular, our description does not include possible pore nucleation

free energies. For a pore to appear, the amphiphiles which are going to constitute the edge

of the pore must change orientation from perpendicular to the membrane to parallel to the

membrane. The free energy per amphiphile needed for this process will be different from the

free energy per amphiphile for a similar process to take place when a pore already exists. The

nucleation free energies is described in the previous chapter.
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Summary

In this thesis we report on free energy calculations for calix[4]arenes and amphiphilic bilay-

ers by using molecular dynamics simulations. The calix[4]arene is a bowl-shaped molecule

consisting of four phenol rings, which can rotate around the connecting methylene bridges.

The isomerization of calix[4]arene studied in the first part of this thesis concerns the rota-

tion of one of the phenol rings, while the orientation of the three other phenol rings remains

unchanged. An amphiphilic bilayer is a membrane resulting from the self-assembly of am-

phiphilic molecules dissolved in water. This property reflects the chemical nature of am-

phiphilic molecules, consisting of a hydrophilic head and a hydrophobic tail. In experiments,

bilayers can not support a large mechanical stress. As a result, bilayers rupture or pores are

opened. The second part of the thesis is devoted to pore formation in an amphiphilic bilayer

under different stretching conditions.

In Chapter 3 the influence of solvation on the conformational isomerism of calix[4]arene

and p-tert-butyl-calix[4]arene is studied by using the quantum mechanical (QM) and semi-

classical (SC) formalisms of the Miertus, Scrocco, Tomasi (MST) continuum model. The

results of both QM-MST and SC-MST are in good agreement with the experimental results

and with molecular dynamics simulations performed with explicit treatment of the solvent

molecules, as described in Chapter 4. As evidenced by the results, the accuracy of SC-MST

dependes on the atomic charges used. It is shown that the MST continuum method is in-

expensive method, giving an adequate description of solvation effects for calix[4]arene and

p-tert-butyl-calix[4]arene in water and chloroform.

In Chapter 4 we studied the isomerization reaction of calix[4]arene and p-tert-butyl-

calix[4]arene in vacuum and in chloroform by using molecular dynamics simulations. As

a first step we calculated the free energies of calix[4]arene and p-tert-butyl-calix[4]arene in a

vacuum as a function of the reaction coordinate by using the umbrella sampling method. The

reaction coordinate chosen was the angle of the rotating phenol ring. The resulting free ener-

gies in a vacuum were used as a first trial of the free energy calculations in chloroform. The

free energy of calix[4]arene in chloroform is then readily obtained by the umbrella sampling

method. The calculation of the free energy of p-tert-butyl-calix[4]arene in chloroform, how-
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ever, was complicated by the confinement of one of the chloroform molecules inside the cav-

ity present in the cone conformation. We proposed two methods to calculate the free energy

in this case: windows umbrella sampling and a new combined coupling parameter � umbrella

sampling approach. The rate constants obtained by the reactive flux method were in good

agreement with experimental data.

In Chapter 5 the formation of a pore in an amphiphilic bilayer was studied. The am-

phiphilic bilayer and solvent were represented by a coarse-grained model. We performed the

calculation of the free energy profile by the potential of mean constrained force method with

a new type of constrained reaction coordinate. This reaction coordinate was a function of

the coordinates of all tail particles, whereas a reaction coordinate usually is a function of the

coordinates of only one molecule. With this choice, we could smoothly control the open-

ing of the pore, including the preceding rearrangement of the amphiphilic molecules about

to constitute the edge of the bilayer. The obtained free energy as a function of the reaction

coordinate was transformed into a function of the pore radius, coinciding perfectly with the

macroscopic free energy expression proposed in Chapter 6. The line tension coefficient thus

obtained agreed well both with the values obtained in Chapter 6 and with experimental data.

In Chapter 5 we reported on molecular dynamics simulations of an amphiphilic bilayer

with a pore under various elongations. As in Chapter 6, we used a coarse-grained amphiphilic

model. We proposed that the free energy of a bilayer with a pore is just the sum of elastic and

edge free energies. The dependence of the pore radius on the relative stretch of the bilayer

was well described by this model. The remarkable result of our model was a system size

dependence, which shifted the phase diagram towards lower relative stretching values for

increasing system size, resulting in a good agreement of the equilibrium relative stretch and

the pore radius with experimental data on much larger systems. The line tension coefficients

obtained from our simulations were also in a good agreement with experimental values and

with those deduced from the free energy function in Chapter 5.
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In dit proefschrift beschrijven we vrije energie berekeningen aan calix[4]arenen en amfi-

fiele bilagen met behulp van moleculaire dynamica simulaties. Een calix[4]areen is een

kom-vormig molecuul bestaande uit vier fenolringen, die kunnen draaien om de verbindende

methyleenbruggen. De isomerisatie van calix[4]arenen bestudeerd in het eerste deel van dit

proefschrift betreft de rotatie van één van de fenolringen, terwijl de oriëntatie van de drie

overige fenolringen onveranderd blijft. Een amfifiele bilaag is een membraan dat ontstaat

door de zelf-assemblage van amfifiele moleculen opgelost in water. Deze eigenschap weer-

spiegelt de chemische opbouw van amfifiele moleculen, een hydrofiele kop verbonden met

een hydrofobe staart. Experimenteel blijkt dat bilagen geen grote mechanische spanningen

kunnen weerstaan; ze scheuren kapot of er ontstaan poriën. Het tweede deel van dit proef-

schrift is gewijd aan porievorming in amfifiele bilagen onder verschillende spanningen.

In Hoofdstuk 3 wordt de invloed van het oplosmiddel op de conformaties van calix[4]-

arene and p-tert-butyl-calix[4]areen bestudeerd, gebruik makend van een quantum mechanis-

che (QM) en een semi-klassieke (SC) formulering van het Miertus, Scrocco & Tomasi (MST)

continuüm model. De resultaten van zowel QM-MST als SC-MST zijn in goede overeen-

stemming met de experimentele resultaten en met moleculaire dynamica simulaties uitgevo-

erd met expliciete oplosmiddel moleculen, zoals beschreven in Hoofdstuk 4. De bevindingen

wijzen erop dat de nauwkeurigheid van SC-MST afhangt van de gebruikte atomaire ladingen.

De MST continuüm methode blijkt een goedkope methode, met een adequate beschrijving

van oplosmiddel effecten voor calix[4]areen en p-tert-butyl-calix[4]areen in water en chloro-

form.

In Hoofdstuk 4 bestuderen we de isomerisatie reactie van calix[4]areen en p-tert-butyl-

calix[4]areen in vacuüm en chloroform, gebruik makend van moleculaire dynamica simu-

laties. In de eerste stap worden de vrije energiën van calix[4]areen en p-tert-butyl-calix[4]-

areen in vacuüm als een functie van de reactiecoördinaat berekend met de umbrella sampling

methode. De gekozen reactiecoördinaat is de hoek van de roterende fenolring. De aldus

verkregen vrije energiën in vacuüm dienen als een eerste benadering voor de vrije energie

berekeningen in chloroform. De vrije energie van calix[4]areen in chloroform wordt dan
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eenvoudig verkregen met de umbrella sampling methode. De berekening van de vrije energie

van p-tert-butyl-calix[4]areen in chloroform, daarentegen, wordt gecompliceerd door de in-

clusie van één van de chloroform moleculen in de holte van de cone conformatie. We dragen

twee methodes aan om de vrije energie in deze situatie uit te rekenen: windows umbrella

sampling en een nieuwe gecombineerde coupling parameter - umbrella sampling aanpak. De

reactiesnelheden verkregen met de reactieve flux methode zijn in goede overeenstemming

met de experimentele data.

In Hoofdstuk 5 wordt de vorming van een porie in een amfifiele bilaag bestudeerd. De

amfifiele bilaag en het oplosmiddel worden gerepresenteerd met een coarse grained model.

Voor de berekening van het vrije energie profiel gebruiken we de potentiaal van de gemid-

delde constraint kracht, met een nieuw type geconstrainde reactiecoördinaat. Deze reac-

tiecoördinaat is een functie van de coördinaten van alle staartdeeltjes, terwijl de gebuikelijke

reactie coördinaten functies zijn van de coördinaten van slechts één molecuul. Met deze keuze

kunnen we het openen van een porie vloeiend controleren, inclusief de daaraan voorafgaande

re-orientatie van de amfifiele moleculen die de rand van de bilaag zullen gaan vormen. De

verkregen vrije energie als een functie van de reactiecoördinaat wordt getransformeerd naar

een functie van de poriestraal, en blijkt goed overeen te stemmen met de macroscopische

expressie geı̈ntroduceerd in Hoofdstuk 6. De aldus gevonden lijnspannings coëfficiënt komt

goed overeen met zowel de waarde gevonden in Hoofdstuk 6 als met experimentele waardes.

In Hoofdstuk 5 brengen we verslag uit van moleculaire dynamica simulaties van een am-

fifiele bilaag met een porie onder verschillende uitrekkingen. Net als in Hoofdstuk 5 wordt

er een coarse grained model gebruikt. We nemen aan dat de vrije energie van een bilaag

met een porie simpelweg de som van elastische en rand vrije energiën is. De afhankelijkheid

van de poriestraal van de relatieve uitrekking wordt goed beschreven door deze theorie. Een

opmerkelijk resultaat van onze theorie is een systeemgrootte afhankelijkheid. Hierdoor ver-

schuift het fasediagram naar lagere relatieve uitrekking met toenemende systeemgrootte, re-

sulterend in een goede overeenstemming van de evenwichts relatieve uitrekking en poriestraal

met de experimentele data van veel grotere systemen. De lijnspanningscoëfficiënt verkregen

uit onze simulaties is in goede overeenstemming met de experimentele waardes en met de

waarde verkregen uit de vrije energie functie in Hoofdstuk 5.
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